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Abstract

AN ADAPTIVE DOSE FINDING DESIGN (DOSEFIND) USING A NONLINEAR
DOSE RESPONSE MODEL
By James Michael Davenport, PhD
A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2007

Major Director: R. K. Elswick
Interim Department Chair, Biostatistics

First-in-man (FIM) Phase I clinical trials are part of the critical path in the development of
a new compound entity (NCE). Since FIM clinical trials are the first time that an NCE is
dosed in human subjects, the designs used in these trials are unique and geared toward
patient safety. We develop a method for obtaining the desired response using an adaptive
non-linear approach. This method is applicable for studies in which MTD, NOEL,
NOAEL, PK, PD effects or other such endpoints are evaluated to determine the desired
dose. The method has application whenever a measurable PD marker is an indicator of
potential efficacy and could be particularly useful for dose finding studies. The advantages

in the adaptive non-linear methodology is that the actual range of dose response and lowest

vii



Vi
non-effective dose levels are more quickly and accurately determined using fewer subjects
than typically needed for a conventional early phase clinical trial. Using the nonlinear
logistic model, we demonstrate, with simulations, that the DOSEFIND approach has better
asymptotic relative efficiency than a fixed-dose approach. Further, we demonstrate that,
on average, this method is consistent in reproducing the target dose, that it has very little
bias. This is an indicator of reproducibility of the method, showing that the long-run
average error 1s quite small. Additionally, DOSEFIND is more cost effective because the
sample size needed to obtain the desired target dose is much smaller than that needed in the

fixed dose approach.



CHAPTER 1

1.0 Purpose of Early Clinical Tnals

First-in-man (FIM) clinical trials are the first time that a new compound entity (NCE) 1s
dosed in human subjects. Thus, FIM Phase I clinical trials are part of the critical path in the
development of an NCE, and the designs used in these trials are geared toward patient
safety. Based on Food and Drug Administration (FDA) guidelines (Estimating the
Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy
Volunteers, July 2005), the starting dose of FIM trials are identified from preclinical
animal studies. Typically, trials are conducted such that the dose is escalated in some
sequential manner until some prespecified dose level is attained or until unacceptable

adverse events are observed.

The FIM study 1s usually conducted with healthy normal volunteers (HNVs) using a fixed
set of predetermined dose levels. At each dose level HNVs are randomized to receive
either a single dose of the NCE or placebo. Each dose level or cohort starting with the

lowest dose and proceeding in an ascending manner is evaluated for safety before the next
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cohort is dosed with the NCE. Exceptions to FIM studies that use HNVs are trials that are

conducted with cytotoxic compounds or monoclonal antibodies. The primary objectives of
FIM trials are: the discovery of the maximum tolerated dose (MTD), the no effect level
(NOEL), the no adverse effect level (NOAEL), characterization of the pharmacokinetics

(PK) and, secondarily, the pharmacodynamics (PD) of the NCE (Ting, 2006).

An accurate assessment of the MTD is crucial to the safety of patients in later stage clinical
trials. Likewise, measurement of the pharmacokinetics is essential to the understanding of
the rate and extent of exposure and the NCE half-life. Data from FIM studies will be used
to define appropriate dosing intervals so that hazards associated with repeat dosing, such as
drug accumulation in the body, are avoided. The NOEL and NOAEL, which may not
necessarily occur at the same dose level, provide information regarding the therapeutic and
safety dosing window. Thus, a major concern in these types of trials is the safety of the
participating subjects (Zhou, 2004). Typical sample sizes of an FIM trial are small, ranging
from 20 to 50 subjects. Typically, a fixed range of doses are predefined by the sponsor,
where single doses are given in an ascending order where d; <d, < ... <d,.Often one or

two subjects at each dose level is given a placebo for control purposes (Zhou, 2004).



1.1 Current State of Early Stage Clinical Trials

Current conventional statistical methods for FIM trials include the ‘3 + 3’ design
(Schroeder, 2002), Coin up-and-down methods (Stylianou, et al., 2004) and the continual
reassessment method (CRM; O’Quigley, et al., 1990), which will be described in

Section 1.3. The 3+3 and Coin up-and-down methods are based on a frequentist approach,

while the CRM is generally based on a Bayesian approach.

In the Bayesian model the parameter of interest is believed to follow some known prior
distribution. The distribution is not necessarily based on prior data, but can be based on the
beliefs of the investigator. Hence, the resulting statistical inference is subjective. In
contrast, the frequentist approach assumes no prior information about the parameter of
interest beyond information provided by the study (Bickel and Doksum, 2001), but rather

the method is based on model assumptions and empirical observations.

The traditional design used in phase I oncology is the 3+3 design where the MTD is
identified from the data. The 343 design is a dose-escalation design, and the starting dose
is typically the human equivalent dose of 1/10th the MTD in the most sensitive animal
species. Three subjects, usually healthy normal volunteers (HNV) are dosed, concurrently.

The dose escalation procedure is as follows:

. start at the lowest dose d; and dose three subjects;
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. repeat dose d; with three additional subjects, if one of the initial three subjects
had a DLT;
. stop the study if two or more subjects displayed a DLT or;

« 1fno DLTSs were observed then escalate to dose d;+.

The algorithm iterates moving the dose up or down depending on the number of toxicities
observed, and the MTD is defined as the highest dose studied with less than, say, one-third
toxicities. Reiner et al. (1999) showed that the probability of recommending the MTD at
the end of the trial never exceeded 44% for the 343 design. A recent example of the 3+3

design approach can be found in a study by Ryan, et al. (2004).

Hutmacher et al. (2005) describes another type of FIM trial in which subjects are given
single doses of a treatment in a rising fashion. Hutmacher provides an example where
HNV’s were assigned to receive one of seven ascending dose levels with a multiplier on
each succeeding dose level of 1x, 3.3x, 10x, 26.7x, 53.3x, 106.7x and 160x, respectively.
In this design, eight subjects per group were assigned to each dose level and then
randomized in a cross-over fashion to a sequence of either active treatment/placebo or

placebo/active treatment.

Coin up-and-down methods are non-parametric and are used to find the MTD, at which the
probability of toxicity is I', where I (the level of risk) is pre specified by the sponsor. For

[ <0.5, the Biased Coin up-and-down (BCD) steps down by a dose level if a DLT is
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observed at the previous dose, and randomizes with probability b=1"/ (1- I') to the next
higher dose and probability 1- b to the same dose if no DLT is observed at the previous
dose. For I'> 0.5, the BCD steps up a dose if no DLT is observed at the previous dose and
randomizes with probability b = (1- I')/T" to the next lower dose and probability 1 - b to the
same dose if a DLT is observed at the previous dose. The BCD assigns a dose to the next
subject only after evaluation for the last dosing period is completed. If n subjects are
required to complete the study, then the study will require at least n evaluation periods. In
the BCD, as in conventional designs, subjects are dosed sequentially, and escalation only

occurs when no toxicities are observed.

BCD designs have advantages of being nonparametric, having a workable finite
distribution theory, and being simple and intuitive to implement. They generate a cluster of
doses around the quantile of interest and possess some optimality properties (Durham and
Flournoy, 1994). Durham et al. (1997) describes a random walk approach where dose-
levels are sequentially allocated. Here, subjects are assigned the next higher or lower dose
from a finite set of dose levels. The assignment to a dose level can be based on a
probability distribution as well as the patient response. Thus, as Durham et al. point out,

the BCD described above is a special case from the set of random walk designs.



1.2 Review of the Continual Reassessment Method

The original Continual Reassessment Method (CRM; O’Quigley, 1990) was suggested as
an alternative approach to dose finding trials. While the CRM is based on a fixed set of
dose levels, data are evaluated from one dose at a time in a Bayesian approach. Thus, in
contrast to the typical dose response trials, the CRM does not have a fixed sample size.
Additionally, the CRM application does not include a placebo dose group, and its
application is usually in oncology trials where treating terminal patients with placebo is

considered unethical.

Generally, a goal of dose response trials is to define or describe the shape of the dose

response curve. The CRM seeks to estimate a shape parameter on a given dose response

function, say ¥ (x;,0), where x; is the dose level and 6 is the shape parameter. However,

this response curve is based on the observance of adverse events, which do not necessarily
coincide with a clinically relevant efficacy response. Therefore, as only toxicity has been
observed additional studies are still needed to determine if there is any clinical utility for

the NCE under investigation.

The CRM, estimates the MTD as the dose level that yields a particular target proportion of
responses for a predefined set of doses and a binary response. The method operates by
updating the posterior distribution of the model parameters after observing each response.

The dose for the next patient is chosen as the dose with (Bayesian current) probability of



toxicity closest to the target response level. Several modified CRM approaches that
mitigate risk of toxicity exposure above acceptable limits have been developed and
implemented (O’Quigley, et al. 1990; Faries, 1994; Korn, et al., 1994 Goodman et al.,

1995, Piantadosi et al. 1998, Potter 2002). O’Quigley, 1990

6
uses ¥ (xi,ﬁ) = {[tanh (xl. ) + 1} / 2} because the hyperbolic tangent has a sigmoidal shape

which will be sharper and more distinct for increasing values of the shape parameter €. An

example of this is presented in Figure 1.1 below:

Figure 1.1: Dose Response Curves for Values of Theta
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To apply the CRM, a prior distribution function, or g(t?) , must be determined. Often in

the Bayesian approach, the prior distribution is based on data obtained from previous trial
experience. In the absence of any previous data, a non-informative prior can be applied. In

the case of the CRM, the prior is defined as:

-6
g@)=e

The probability distribution of response Y given € is:

. e ) a J’j)
JX16)=9(x(j).y j,0) =y j(x(), 1=y (x()),0)} ,
where x( ) denotes the dose used in the i step.

In order to estimate the shape parameter, the posterior distribution must be obtained. The

posterior distribution is the conditional density of & given ¥, = y,,Y, =y,,....Y, =y,.

Once the posterior distribution is calculated, the CRM estimates the posterior Bayes

estimator, @ (the shape parameter). The posterior distribution is defined as:



j
2(0) 11 ptx(1), v, 14}
1O1Y,=y)=—L=1 ,

J
Jg(w) T1 ¢tx(D), y;» piou
0 I=1

and the posterior Bayes estimator with respect to the prior distribution g (&) is defined as:

u=EB] YY), .Y )= éef(ale =y ;)96

In order to begin estimation, the initial estimates for(8,x,) are chosen, which allow the

evaluation of the dose response. To illustrate, suppose dose levels associated with the

toxicity probabilities for & =1 are as given in Table 1.1.

Table 1.1: Example Dose Levels and Associated Toxicity Probabilities for € =1

1 1 2 3 4 5 6
Xi -1.47 -1.1 -0.69 -0.42 0.0 0.42
[tanh(xj)*+1]/2 | 0.05 0.1 0.2 0.3 0.5 0.7

negative dose these data have been scaled in some fashion.

The data in Table 1.1 are from O’Quigley (1990), and since it is not possible to give a
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Solving the posterior distribution requires recognizing the following:
1. The numerator is a product of the probability of response that is:

YG().0). fory ;=

Hx())sy ;0= I=¥(x()).0), fory;=0

2. This product is multiplied by the prior distribution g(8).

3. The denominator integrates to:

1
l—log((tanh(xl.)+l)/2)

, when Y, =1 and

log((tanh(xl.)+l)/2)

,when y.=0
log((tanh(xl.)+l)/2)-—l ’

For the first dose level, no toxicity was observed (YI = O) , the posterior distribution

resolves to 1.62e_0[1 - (tanh(x1)+ 1)/2], then solving for the Bayes estimator gives £ =

1.38.

Finally, a decision as to which dose to give to the next subject must be determined. This is
accomplished by choosing the dose x;, which is closest to i ;i ,(6) for the value of L
obtained from the current iteration of the Bayes estimator. The new recommended dose is

—0.39 and the dose closest to this value is chosen for the second dose level, which 1s —0.42

(dose level 4). At this point, the process iterates again.
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For the second dose level, no toxicity was observed (¥, =0) and the posterior distribution

resolves t01.31e_9[1 — (tanh(x1)+1)/ 2]2 . The Bayes estimator is found to be ¢ =1.18,

the new recommend dose i1s —0.47 and the dose chosen for the third dose level is —0.42 or

dose level 4.

The CRM is designed to find the dose that results in observing toxicity at the desired pre-
specified level. This is accomplished through estimation of the Bayes estimator, which in
this case is the shape parameter of the dose response function. At any point in the study,

the next dose must be either the current dose or the dose immediately prior to or

succeeding the current dose (xl. _pXporX g ) ; small steps can potentially make reaching

the desired dose response a slow and tedious process. Further, with fixed dose levels, it
may not be possible to obtain a true estimate of the desired result as the optimal dose may
be either below or above the specified set of dose choices. Since dose response curves tend
to be non-linear (often sigmoidal) in nature, a linear approach is only useful if the choice of
dose levels was fortuitous enough to be in a linear portion of the sigmoidal curve If dose
response is measured in terms of DLT, and the response curve is well-behaved, and the
predetermined set of doses chosen contains the MTD, then the CRM can do a reasonable
job of estimating a safety dose response curve. However, there is a need for a method that

can handle more complicated cases for the multi-parameter model. In this case, the CRM
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is not likely to provide the desired result, and a non-linear approach is needed to handle

more complex models.

O’Quigley (1990) gives an example for the case of the TD20 (i.e., the dose at which there
1s a 20% chance of observing a DLT), in which doses are administered to one patient at a

time. The probability of a DLT at a dosed,, is given by z,, i =1,...,n. Initial choices or
priors for each 7, are generated by the sponsor. The dose-escalation procedure starts with

a dose at which the initial chosen probability of a DLT is closest to 0.2. Once “r” responses
have been observed, the estimated probability of a DLT (posterior probabilities) at each
dose is updated using Bayes theorem. The (r + 1)™ patient will be administered the dose at
which posterior probability of a DLT is closest to 0.2. This process continues until the

maximum sample size has been reached.

In practice, the original format of the CRM has rarely been used due to ethical concerns
(e.g., Korn, 1994). For example, the starting dose in the CRM might be a dose in the
middle of the dose range. Several authors (Korn, 1994; Faries, 1994; Goodman, 1995,
Piantadosi et al., 1998; Potter, 2002) have recommended modifications to the CRM. These
modifications avoid exposing the first subject to high doses and minimize the risk of
assigning patients to higher, more dangerous doses than the target dose or upper bound

identified in pre-clinical studies. The two-stage version of the CRM starts at the dose d,

and escalates one dose step at a time until the first toxicity is observed. Once the first

toxicity appears, the second stage in which the CRM is used begins.
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O’Quigley and Shen (1996) incorporated the concept of a two-stage version of the CRM
with a likelihood approach, referred to as “The Likelihood CRM” (CRML)). In the first
stage, one patient is dosed at a time, and in the second stage, three subjects are dosed at the
same time. From this point on, the CRML uses a likelihood form to calculate the
probability of a DLT. The CRML is thus no longer a Bayesian method. Thus, the updated
CRML still has the same limitations of the original method in terms of a pre-specified set
of dose levels that contains the MTD. Additionally, there is still a need to estimate cases
where multi-parameter models are needed, and the CRML (like the CRM) is not equipped

to do this.

Piantadosi et al. (1998) present a modified approach to the CRM. In their modification the
true dose-toxicity measured as a dichotomous variable is modeled against dose as a logistic
regression model. The dose-toxicity is defined to be present if a grade 3 or 4 is observed

and absent otherwise. Then the probability of toxicity 1s modeled as,

-1
-pld—-d
Pr{toxicity]=|1+e ( 50) ,

where d is the dose used and d, is the dose for which the probability of a toxicity is one-

half. The parameters B and 5}50 are estimated from preliminary data and for subsequent
doses by updating the estimates of the model parameters and estimating d,,, the dose at

which the probability of toxicity is 30%, as
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~ ~ 0.3 A
d..=d., +log| —— .
30 50 g(l—O.?))/ﬂ

This procedure is repeated until the target dose changes by less than 10 percent. This
method does not require a fixed set of doses or a fixed sample size. Also the target dose for
each new group of patients is computed from the parameter estimates of the data from
previous doses. Since estimating parameters of a logistic regression model heavily depends
on the distribution of successes and failures, sparse cells do not often provide reliable
estimates. Piantadosi, et al, neither discuss this issue in their article nor provide estimates
of variance for the doses in each step. Moreover, when there are no toxicities in some cases
they suggest using data from other trials to improve on the estimates. This is often not
practical, especially in first-in-man trials. The method developed herein named
DOSEFIND will also employ the features of no fixed set of doses or sample size. In
addition, the DOSEFIND uses a non-linear model approach and uses a PD marker for
examination of efficacy. A more complete discussion of the differences in the two methods

is presented in Chapter 4.

Potter (2002) consider the sparseness of toxicity and proposes an improvement to the
Piantadosi method. This method, termed adaptive dose finding algorithm, consists of two
stages. In the first stage, doses are escalated in a fixed order. The second stage begins

when a DLT is observed. According to this method, three patients are used for each dose

sampled. The dose response model is log(p/1— p)=A+Blog(d), where p is the DLT
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probability and A and B are constants that are updated during stage two. Additionally, two
stopping rules have been considered

» At least nine patients treated in stage two; at least three DLTs must have been

observed; the estimated variance of log( p/1— p)at the MTD must be less than

0.4.
- At least nine patients treated in stage two at least four DLTs must have been

observed; at least 18 patients must have been treated.

Although this addresses the issue of fitting models to non-existing toxicities, the issue of
reliability is not well addressed and the focus remains only on toxicity. Unlike the
DOSEFIND, which uses a nonlinear approach, a logistic regression is used by Potter to
determine the next dose. Additionally, the DOSEFIND, method in contrast, is specifically
designed for determining the dose for a specified efficacy target. The outcome therefore is
not necessarily a dichotomous outcome and often is a continuous outcome. This allows the
method to implement a confidence interval around the target dose to set criteria for finding

the appropriate dose.

1.3 Adaptive Clinical Trials Design

An adaptive design is defined as a multistage study design in which accumulating data is

evaluated in order to decide how to modify aspects of the study without undermining the
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validity and integrity of the trial (Dragalin, 2006). In adaptive designs, a main objective for

examination of accruing data is to allow implementation of an adaptation that will govern
some aspect of the conduct of the remainder of the trial (Gallo et al., 2006). A number of
adaptations have been suggested (modification of the planned sample size, patient

population, primary endpoint, trial hypothesis, treatment regimen, statistical analysis plan

and randomization allocation (Gallo, 2006)).

Hence, an adaptive design requires multiple stages with access to the accumulated data
with at least one of the following rules applied to each review of the data: allocation rule,
(how patients are assigned to different arms of the study), sampling rule (how many
patients are to be treated in the next stage), stopping rule (when or how to stop the clinical
trial) and decision rule (changes that are made to the study other than the three rules
previously mentioned) (Dragalin, 2006). Further, this methodology has been developed to
include varying the number and timing of interim analyses and early stopping rules. The
newer adaptive designs also allow for even broader design modifications (such as,
changing the endpoint, switching between superiority and non-inferiority, discontinuation

of treatment arms, etc.) of ongoing clinical trials.

In this Section a description of the salient adaptive designs is presented. In Section 1.3.1,
group sequential, optimal two-stage designs and the linkage of these clinical trial designs
to the adaptive dose response approach are discussed. In Section 1.3.2, the seamless

design, which typically combines objectives from separate trials into one design, is
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described. In Section 1.3.3, the application of sample size modifications to adaptive
designs is discussed. In Section 1.3.4, adaptive designs where treatment arms are
discontinued are described. In Section 1.3.5, adaptive designs that consider computation of
confidence intervals are reviewed. Finally, in Section 1.3.6 dose response adaptive designs

are discussed.

1.3.1 Adaptive Group Sequential Designs

Based on Dragalin’s rules, group sequential designs would be the considered adaptive
designs. The European Agency for the Evaluation of Medicinal Products EMEA (2006)
subscribes to this definition by acknowledging that group sequential designs have been
developed to avoid inflation of type I error associated with repeated testing of treatment

effects based on accumulating data.

Thall and Cheng (2001) present optimal two-stage designs based on a multivariate group
sequential hypothesis test including both safety and efficacy outcomes. This approach,
using both safety and efficacy, requires more patients than approaches designed to evaluate
efficacy alone. Hence, this particular method may be more suited to oncology trials where
survival is of interest and an example of this type is discussed in the paper. Emerson
(2006) provides a link between group-sequential designs and adaptive designs. Emerson

points out that sequential methods can be divided into two overlapping categories:
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‘prespecified’ sequential sampling plans and ‘adaptive’ sampling plans. The in the adaptive

approach the sampling plan is redesigned during the clinical trial.

There is sizeable overlap in the characteristics of adaptive clinical trials. For example,
updating the sample size may be seen as changing a stopping rule. Modification of the
measure for describing treatment effects, likely entails a change in the statistics and
inferential methods. One could also argue that increasing the sample size to power a study

to detect a different alternative is changing the hypothesis.

Jennison and Turnbull (2006) provide additional linkage between group sequential and
adaptive designs. That is, group sequential designs sample the first stage, then evaluate the
data, and then make a decision to stop or continue. Adaptive two-stage designs perform the
same task, but choose new sample sizes and stopping boundaries based on the data from
the first stage. Further, evidence of the relationship between adaptive designs is seen in the
small improvement of optimal adaptive designs over group sequential designs.

The goal in all of these designs is to determine a superior dose through hypothesis testing;
these designs do not evaluate the non-linear characteristics of dose response.

Each of these designs dose share the common feature of repeat analysis on accumulating

data to determine the next step in the trial.
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1.3.2 Seamless Adaptive Dose Response Designs

In a seamless design, objectives that are typically addressed in separate trials are
coordinated into a single study. In the adaptive seamless case, the final analysis is
performed on patients from both before and after any adaptations to the study. In Phase
[I/111 seamless designs, a major advantage is that it allows data from the learning phase
(Phase II) and the confirmatory (Phase III) study to be combined. This also helps in
long-term safety evaluation as patients in the learning phase continue in the study for a

longer period than would otherwise be the case (Maca, et al., 2006).

Bischoff and Miller (2005) demonstrate a two-stage adaptive design with a minimal
number of patients in which they control the type I error rate, detect a given clinically
relevant difference in the means (if it exists), and controls for the probability of an inferior
treatment being chosen after stage one. Bischoff’s approach performs standard hypothesis
testing and is not non-linear in nature. Bauer and K6hne (1994) proposed an adaptive
interim analysis procedure designed to combine the p-values from tests before and after a
preplanned adaptation into a single test statistic controlling the overall a-level. This
approach assumes a fixed sample size, performs standard hypothesis testing and is not a

non-linear approach.

Thall et al. (2001) proposed a sequential Bayesian phase 1I/I1I design. This design was

based on survival time, discrete early events related to survival and a mixture model. The
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decision to stop early, stay in phase Il or move to phase 1l was assessed in the phase 11
portion of the design. This is a confirmatory rather than dose-response design (survival is

the desired outcome) and it is not a non-linear method.

Todd and Stallard (2005) present a frequentist approach to seamless phase 1I/11I studies
design. In this design, it is presupposed that a short-term endpoint is available at the phase
II stage, but a long-term endpoint is not available. Further, the short-term endpoint must be
a reasonable surrogate for determining the selected treatment for phase 111, and it is
presupposed that the long-term endpoint is only of interest in phase III. This method is not
designed to evaluate the dose response curve, but rather to move one of several dose levels

from a phase Il to a phase III trial based on hypothesis testing results.

Wang (2006) proposes an approach where the best of several treatments from a phase 11
learning study are selected for a phase Il pivotal study. This is essentially a drop-the-loser
method, but with the added application of using the conditional error function for
determination of the type I error function in pivotal studies based on information from the

learning stage.

Seamless designs evaluate the data from the learning stage to continue into the pivotal
stage. This includes the evaluation of a fixed set of doses with hypothesis testing to decide

which dose levels give the response of interest for study in the pivotal stage of the trial.
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Seamless designs are not evaluating dose response curve and are not non-linear in

approach.

1.3.3 Adaptive Dose response Designs — Sample Size Modifications

One major consideration of the adaptive design is to allow for sample size modifications,
which reduces the risk of an uninformative outcome due to an underpowered trial (Golub
H., 2006). Cui et al. (1999) propose a method for a new group sequential test that preserves
the type I error rate and allows for increasing the sample size. This is applied to traditional
group sequential designs in which hypothesis testing is of interest. Miiller and Schéfer
(2001) propose blending adaptive and group sequential designs by allowing changes to the
sample size, the alpha spending function and the number of future interim analyses. These

changes can be made at each occurrence of an interim analysis.

Banerjee and Tsiatis (2006) consider two-stage designs in which the sample size and the
rejection rule are dependent upon the results of the first stage. They present a two-stage

adaptive design that minimizes the average sample size under the null hypothesis. These
are all traditional study designs in the sense that a hypothesis test is used to determine if
the treatment is better than placebo and is not a dose-response approach where the dose-

response curve is determined. Mehta and Patel (2006) propose an adaptive approach to
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sample size re-estimation for group sequential clinical trials that do so without inflating the

type I error.

Proschan and Hunsberger (1995) suggest a double sampling method approach that uses
information from the significance of treatment differences from the first stage to determine
the additional sample needed and the critical value to use at the end of the study. This is
done by using an increasing conditional error function that specifies the amount of type I
error rate for the second stage of the study. Lehmacher and Wassmer (1999) define a
method based on classical stopping boundaries that simultaneously permits sample size re-
estimation based on observed data. The method is based on the inverse normal method of
combining independent tests to generate an exact solution for the unknown variance and

sample size between stages in the trial.

Liu and Chi (2001) provide a sample size re-estimation approach that protects the type I
error rate, produces the desired statistical power and limits the total sample size. This is
done by extending the conditional error function from Proschan and Hunsberger to the

general case.

All of the designs in Section 1.3.3 use hypothesis testing of a clinical endpoint to
determine superiority of a treatment and take steps to ensure the maintenance of the o-

level, but are not estimating a dose response curve. However, what is common to our
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method is the combining of data gathered in previous steps with the current step to

evaluate the parameter of interest.

1.3.4 Adaptive Designs - Treatment Discontinuation

Hung et al. (2006) describe methodological issues in adaptive designs. One of their
considerations is allowing for elimination of ineffective treatment arms during clinical
trials. Treatments may be dropped due to lack of efficacy or poor safety profiles. This class
of designs is commonly called the drop-the-losers or play-the-winners rule. The remaining
sample size of a dropped dose level is reallocated to those dose levels still under
consideration. Konig et al. (2006) provide a hierarchical testing procedure starting with
the highest dose and proceeding down to the lowest dose only if the higher dose was

shown to be more effective than placebo.

Morita and Sakamoto (2006) provide simulation examples of treatment selection based on
a Bayesian approach. For the usual hypothesis of active equal to control, their results
indicate that selection of an active treatment that is actually comparable to placebo is
higher than expected. However, with regard to intolerable toxicity or poor efficacy, early
termination of a treatment arm could be expected. Hence, patients would be at lower risk to

exposure of ineffective treatments.
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These designs can reduce the risk of exposure to ineffective treatments, but do not provide

an evaluation of the dose response curve.

1.3.5 Adaptive Designs — Confidence Interval Estimation

Another measure of interest is the construction of confidence intervals. Ford and Silvey
(1980) demonstrate that the construction of the confidence interval remains reasonable
even though a design is sequential in nature. Hartung and Knapp (2006) confirm this
method in self-designing clinical trials where repeated confidence intervals are derived for
the parameter of interest. The confidence interval can be calculated at each interim analysis
and always holds the predefined overall nominal confidence level. Moreover, the
confidence intervals calculated during the course of the trial are nested in the sense that a

calculated interval is completely contained in the previous intervals.

Mehrotra and Fan (2006) note that the application of repeated confidence intervals can be
applied to any type of adaptive trial design including those that include sample size

adjustment due to an update in the variance estimate.
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1.3.6 Adaptive Designs — Measuring Dose Response

Finally, we consider adaptive designs for measuring dose response. Early phase I trials can
all be considered dose response trials in some sense. Typically, these designs look to
choose an MTD from a fixed set of predetermined dose levels. Toxicity is measured in a
binary fashion as the observance or not of a DLT. Conaway, et al. (2004) present a method
for dose escalation when more than one compound i1s administered simultaneously. A

dosing approach for two compounds is presented in Table 1.2:

Table 1.2: Two treatments used in Phase I Trial: paclitaxel and carboplatin in patients with
solid tumors from Conaway et al., 2004.

Treatment (mg)
Compound 1 2 3 4 5 6
Paclitaxel 54 67.5 81 94.5 67.5 67.5
Carboplatin 6 6 6 6 7.5 9

When more than one treatment is given, the ordering of toxicity between treatments is
unknown. In the above case, one can not determine if treatment 3 is more toxic than
treatment 5 or 1if treatment 4 1s more toxic than treatment 6. This is because the dose
strengths of the two compounds are both different and the synergistic effect on toxicity
could be different. However, a partial ordering approach to the probability of observed of

toxicity can be applied. An example of partial ordering is presented in Figure 1.2.
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Figure 1.2: Example of two partial orders

Simple Order 1—2—3—4—5—6

3—-4

Partial Order 1 -2 <
5 -6

The next treatment to be dosed in the study is determined by examining the estimated
probability of toxicity associated with each treatment 7,. For a set T with more than one
treatment, then a choice is made based on the following rules:

o If Z,>7,,,Vte T, then choose the smallest t for the simple order. For the partial

order, if there is a tie for the lowest probability of toxicity, then choose randomly

from the candidates,
. If #,<7,,, foratleastoneze T then choose the largest dose level in T with
T, < TTppge Tor the simple order. For the partial order, choose randomly among all

te T that have the largest probability of toxicity.

The Conaway design is novel in its approach, is a Bayesian method with a fixed set of

doses, but it is not a non-linear design methodology.

Chang and Chow (2005) propose a hybrid frequentist and Bayesian methodology, is

essentially a variation of the CRM. The CRM is modified in that least squares means are
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used for estimation of all model parameters, and the Bayesian method is used for
re-estimation of the posterior distribution of some parameters. In the simulation, a

hyper-geometric model with three parameters and a non-informative prior for parametera,

was used:

—a,x
0.03x+a e 4 )~1’

p(x,a)=C(ae )

where a, €[0.06,0.1] and aj € [150,200].

— a<a,<bh
a4~g(a4): b—a 4
0, otherwise

In this example, Bayesian method was used to obtain the posterior distribution fora,. Also

applied was a method of randomization such that when patients were randomized to a
treatment, the probability that subsequent patients would be randomized to the same
treatment was reduced. This coupled with rules for drop-the-loser also being included
make this approach innovative in its design and execution. However, the method 1s applied

to a predetermined set of fixed doses and assumed toxicity probabilities.

Zhou et al. (2006) present a Bayes approach to a bivariate dose escalation design. In this
design a logistic regression is used to predict the probability of a DLT and a linear mixed

effects model for the desired outcome (DO). This approach allows for the DO to be
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continuous, albeit a linear response model, in addition to consideration of the usual binary

outcome of observation of a DLT for safety.

Bauer and Rohmel (1995) propose a multistage dose response design methodology. In this
hypothesis-testing design, a null hypothesis is tested based at each stage on the product of
all previous p-values less than the global critical limit. The global critical limit is based on
Fisher’s product test statistics. If Ho is rejected at an intermediate step, it is either
concluded that a dose-response exists or evaluations continue on to the next stage. The

dose levels and number of stages for such a design are a predetermined fixed set.

Adaptive designs in early clinical trials increase the possibility of exposing fewer patients
to ineffective treatments (dose levels below the NOEL), provide a better understanding of
dose response, and decrease the overall cost of drug development. Adaptive designs can
be model based in which patients are assigned to the next dose based on the response of
patients dosed at preceding dose levels. Adaptive designs can also provide a better
understanding of dose responsiveness, which leads to a better choice of doses going

forward into pivotal Phase III trials (Raymond et al., 2006).

Insufficient exploration of the dose-response is often a key shortcoming of clinical drug
development. Initial proof-of-concept (PoC) studies often rely on testing just one dose
level (e.g., the maximum tolerated dose) without much information on which to base the

decision, assuming “more is better” and hoping the “right” dose was selected. Hence,
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consideration of adaptive dose-response designs in exploratory development may lead to

better choices of dose selection for PoC studies (Gaydos et al., 2006).

None of the above methodologies described provide an approach to estimate the dose
response curve by non-linear methods. Our approach is not a hypothesis testing approach,
nor does it attempt to generate an a-spending function. The motivation for our approach is

described in the next section.

14 Motivation for the DOSEFIND

The CRM, 3+3 design, BCD and current adaptive methods are Bayesian and/or frequentist
in nature. These design methods are based on a pre-specified set of dose levels to
determine an MTD. In current adaptive methods, sequential, group sequential, and
seamless confidence interval approaches are used. In current dose response designs, the
hypothesis testing of a clinical endpoint to determine superiority of a treatment is used.
With the exception of the CRM, none of these methods consider the application of a
sigmoidal dose response curve for the evaluation of dose response. For the CRM, the
response curve is based on the observance of adverse events, which does not necessarily

coincide with a clinically relevant response.
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We have generated the DOSEFIND method; a method for obtaining the desired response

using an adaptive non-linear approach. This method will be applicable for MTD, NOEL,
NOAEL, PK, PD effects or other observed endpoints for which optimization is desired.
Using a nonlinear logistic model, a sigmoidal dose response curve will be estimated.
Employing an adaptive non-linear approach, the proposed method will allow for an
evaluation and elimination of dose levels below the NOEL so that the actual range of dose
response will be obtained more quickly, accurately and with fewer subjects than typically
needed for a conventional early phase clinical trial. In addition, the DOSEFIND method
will be particularly useful for dose finding studies. Toward that end, we will describe the
applications of this method in cases where a measurable PD marker is an indicator of

potential efficacy.

Due to the logistics of generating PK and some PD results, these methods may extend the
time required to complete the study during the early stages of drug development. However,
any increases in time at this phase of development have the potential to be more than offset
by significant savings in time at later stages. For example, repeating a PoC study due to a
poor choice of doses would add significant time and cost to the development of the NCE of

interest.
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1.5 Safety Considerations

In human clinical trials patient safety is of paramount importance. The DOSEFIND
method will work best in compounds that have a fairly clean safety profile in pre-clinical
testing. Conversely, compounds with a narrow therapeutic window may not be good
candidates for this approach because of the increased chance for adverse events associated

with small changes in the dose level.

Safety in clinical trials is measured by serial tracking of clinical laboratory panels, adverse
events reported by the patients or those observed by the clinical staff. In the DOSEFIND
method, safety is evaluated by considering the probability of adverse events being serious
enough that they are considered DLTs. In doing this, a number of trials may have to be
stopped prematurely. However, the DOSEFIND method will still provide some measure of
efficacy relative to these events. This efficacy data could help reseachers decide whether or
not to continue drug development. That is, observing a sufficient efficacy at a lower dose
than anticipated could keep an NCE a viable candidate for future work. Alternatively, if

little or no efficacy is observed, the viability of the NCE is called into question.
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1.6 Prospectus

In Chapter 2, the methodology of the DOSEFIND method is presented in Section 2.1. The
algorithm for the DOSEFIND is described in Section 2.2, adjustment of the method for
safety considerations is described in Section 2.3 and an example of how the procedure
works is presented in Section 2.4. In Chapter 3, a description of various simulations is
presented in Section 3.1, and the results and discussion are presented in Section 3.2.
Finally, a brief summary and the results of the DOSEFIND method along with

considerations for future work are presented in Chapter 4.



CHAPTER 2

2.0 Introduction

The DOSEFIND methodology is presented in Section 2.1. The DOSEFIND method may
be used with any non-linear function. Thus, the general form of the non-linear (along with
some representative functions) are presented first. Particular attention is given to the
logistic function as it is adopted for use in this dissertation. An algorithm detailing the
stepwise process of how the DOSEFIND method performs is described in Section 2.2.
Modification of the DOSEFIND method adjusting for safety considerations is presented in
Section 2.3. Finally, an illustration of the DOSEFIND method is presented in Section 2.4

using simulated data generated with parameter estimates from a clinical trial.

2.1 DOSEFIND Method

Consider a series of continuous responses at various dose levels to some unknown
dose (d ’ ) Each observed response is assumed to be independent as each comes from a

different subject or patient. For the DOSEFIND method, each new dose (in the series of

33
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doses) is chosen based on the parameter estimates from the data obtained from previous
dose levels. New parameter estimates are generated, which in turn specify the next new
dose level. This process continues until the stopping rules are achieved. The number of
subjects at the current state of the process is n, and the total sample size at the completion

of the process is Nr.

There is a general class of nonlinear functions that can be used to estimate sigmoidal dose

response curves from binary, count or continuous data. The general form is:

U=a+yF(D;B) 2.1

where

F is a continous and monotonically increasing function with range in the unit

interval
D is the set of doses D ={d“),..., d(k)} , where k is the number of dose steps

u denotes the unknown effect,

B denotes the vector of unknown parameters, and

« 1s the minimum and & + ¥ 1s the maximum unknown effect parameter.
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Examples of these types of models include the Gompertz model

—e(— d
By B

where F (d ; ﬂo, ﬂl ) = and the Michaelis-Menten model

where F (d;¢) = ﬁ . We illustrate the proposed method with the nonlinear logistic
+

+ﬂd) -

-\ B
model, where F/ (d ; ﬂo, ﬂl) =|1+e ( 0" . Each of these non-linear functions

will produce results that differ only at the tails of the sigmoid. That is, all of these
functions will produce similar results in the linear (“middle’) portion of the response
profile. Simulations for the Gompertz and Michaelis-Menten models are also provided,
discussed and compared to the non-linear logistic model. Hence, we have chosen to utilize
the nonlinear logistic model as the primary model of choice for illustration of the

DOSEFIND method.

The estimate of the target dose (7},) for the general nonlinear form is

() A
" B

2.2)

In an attempt to estimate the (7}, ), we assume the observed response of interest is either the

expression or suppression of some pharmacodynamic or biological marker. For example,
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suppose that the amount of suppression of a specific biological marker is of interest where

the biological marker is endogenous. Therefore, levels of the biological marker are

reported as the amount of suppression, relative to baseline for each subject. For our

example, baseline is defined as the observed levels of the biological marker before

administration of the NCE.

Both expression and suppression of a marker can be constrained such that the marker is

bounded below by zero. In this case, the value for ¢ (for the non-linear logistic and the

Gompertz models) in (2.1) and (2.2) is zero, and for the nonlinear logistic, Gompertz and

Michaelis-Menten the 7, is:

Logistic:

Gompertz:

Michaelis-Menten:

_toe{en, /(r-1,))-50

T
D ﬂl

T - ~loglog(y/ a4, || -,
A

I,=¢ 2
y_ﬂTD+a

(2.3)

The variance of Y 1s assumed to be a function of the mean. That is,

Var(Y) =1V (1)

(2.4)
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Based on the premise that the observed variance is larger in the “linear” portion of the dose
response curve compared with the tails and # is in the unit interval, ¥ (u) is assumed to

follow u(1— ).

Applying a quasi-likelihood estimation criterion, it is of interest to maximize

Qs Y)=20u;y,)
1

where

. _ lu y—t . . .
Q( H yl.) Jy o (t)dt and 1n the illustration becomes

H o M,
j—uat:— y. log[ L }Hog(l—,u.) (2.5)
y T 1-u l

Estimation of 1 is based on the moment estimator

2
N
T 2z

0
|
=
>
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To use the maximum quasi-likelihood criterion in PROC NLIN (SAS® Version 8.02,

Cary, NC), loss and weight functions must be generated. The loss function is the negative

log quasi-likelihood for the i observation. For the logistic model the LOSS function is
LOSS:—(yl-log(,ui/(l—,ul-))+log(l—,ul-))/wi (2.6)
and the weight function is
wi =Y (1 (1= 127)) 2.7)

which is the reciprocal of ¥ (u). Application of these loss and weight statements
maximizes the quasi-likelihood given in (2.5) using the nonlinear model given in (2.1) and
the variance assumption given in (2.4). The weighted mean square error is the moment
estimator for7 .

Let G, =a+ yF(d(”,]}) and @ =[¢ y B],then T is derived using the quasi-
likelihood approach found in Seber and Wild (1989) with the following regularity
conditions:

3
_9G, is bounded with(i=1,2,...,mrst=12,... p)
06,060,096,

b. The third moments of G exist, and

c. n”'1,(0)has a positive definite limit as n — oo.
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11, (0)=5] 2 |=GL(0)v (o). (0)

0000 T
where G. (€) is an n x p first derivative matrix with respect to € and

V(O):diag(vl,vz,...,vn), i=12,...,n.

Here v, = u, (1- ) from (2.4).

To estimate 7, and B, starting values must be generated. This is accomplished by
collecting data from an initial set of doses (d(o)) . At a minimum, d® must consist of three

dose levels in order to begin non-linear estimation. A simple linear regression using the

transformation log(z/(1— u)) of the response data provides the starting values for ﬁo

and ’Bl , where 4 is the response. For our purposes, 4 is assumed to be a percentage of

expression or suppression of the pharmacodynamic or biological marker. The starting

value for y is chosen based on experience with the biomarker under consideration. The

estimate of 7 is the weighted mean square error from the non-linear model.

The large sample confidence interval on Tp 1s found using the delta method. That is an

~

approximate estimate for the variance is Var(Tp) = HEZH , where H is the partial

derivatives from (2.3). For example, in the nonlinear logistic case the partial derivatives

arc:



Now define H = {

Then a large sample 100(1- & )% confidence interval is given by

A

-1
dF((u —a)ﬂﬁw
ar, T, /

dy B
Tp__ 1
8,30 ’Bl

F Y, - /p
ar, T, /

9B ﬂf

D D D

oT . oT. oT }

9B, B, o

T, itl—a/Z;nﬁpVVar(j:’D)
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(2.8)

(2.9)

(2.10)

@2.11)

(2.12)
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2.2 DOSEFIND Algorithm

As shown in flow diagram Figure 2.1, the algorithm begins with the required data inputs.
Once sufficient data are obtained (e.g., bioanalytical data from d?” ), the non-linear
regression is executed and evaluated. Once model convergence occurs, the 100(1-a) %
confidence interval for T}, is estimated. If conditions that govern the stopping rules are
satisfied, the procedure stops. If not, bioanalytical data based on the new 7}, are generated

for the next iteration. The DOSEFIND method is completed after successful estimation of

T,, . Failure to estimate 7, can happen for a variety of reasons, and discussion of this is

included in the explanatory text that follows Figure 2.1.
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Figure 2.1: Flow Diagram of Method

2. Generate
Bioanalytical Data from
1. Data Inputs Initial Dose Levels
A

3. Run Non-Linear 2c¢. Generate
Logistic Regression Bioanalytical
I Data

3c.
Tp based on
Fixedy, By, B,

i ™ b, dc. & 4d.
Jbuii : " Run Delta Method
T, = Dose*Multiplier Ty based on ¥, |

By, By C“"ﬂi—‘“ a

»  New TD

5.&6.
Check

( Done }« I Met Stopping Not Met
Rules

The steps in Figure 2.1 are described as follows:
1) Obtain the following data inputs from the clinicians, statisticians,
pharmacokineticists and other professionals on the development team:
a) The target effect (desired response) of interest;
b) The dose multiplier or the amount to increase the dose level if the
nonlinear regression fails (e.g., convergence failure or singularity of the

Hessian);
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¢) Minimum dosing unit referred to as the bin size (e.g., tablets,
milligrams, mg/kg);

d) Number of subjects per dose level (active treatment and placebo);

e) Define the following stopping rules:
i) The number of times the dose multiplier may be used;
i1) The alpha level for the 100(1-a)% confidence interval; and
1i1) The desired width of the confidence interval.

Stopping rules are discussed below and subjects per dose level will be varied in

the simulation experiment presented in Chapter 3.

2) Determine the initial dose levels (d(o))

a) The initial starting dose is based either on information from non-clinical
data or previous experience in humans. For a FIM study the starting
dose is usually calculated as 1/10™ the no adverse effect level (NOAEL)
of the most sensitive animal species and is converted to a human
equivalent dose (FDA Guidance Estimating the Maximum Safe Starting
Dose in Initial Clinical Trials for Therapeutics in Adult Healthy
Volunteers, July 2005). For trials that are not FIM the initial dose
should be based on previous human experience;

b) The additional doses may be the amount of the initial dose multiplied by
the dose multiplier. Generally three dose levels with placebo controls
are used in the initial set of dose levels;

c) Generate bioanalytical data from the initial dose levels; and
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Begin non-linear estimation. once data are obtained from the first three

dose levels;

3) Execute the nonlinear regression analysis using a specific form of (2.1), (in our

case the nonlinear logistic, the loss (2.6) and weight (2.7) functions) to obtain

parameter estimates of 7, B (in our example & =0) and their covariance

matrix (2). There are four possible outcomes of the regression:

a)

b)

Given that the procedure converges, the Hessian is nonsingular and the

estimate of ¥ is greater than M (the target response of interest), then

both the target dose 7}, and its variance as computed by the delta method

described above can be obtained

If convergence and/or singularity issues exist after attempting to

estimate ¥ and B, then fix y at its defined maximum and rerun the

estimation:

1) The procedure fails to converge after fixing y and no parameter
estimates are obtained;

i1) The Hessian is singular after fixing » and no covariance matrix is
estimated; and

If the estimate of ¥ is less than Hr, then the next 7}, is estimated based

ony=1.The new T, is the larger of the calculated 7}, or the current T,

multiplied by the dose multiplier.
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In each of the above cases (3b[1], 3b[ii], and possibly 3c) the subsequent dose

is chosen based on the multiplication of the current dose with the specified dose

multiplier.

Assuming that both the target dose 7, and its variance in (2.4) can be obtained

(as described in 3a above), the algorithm may be continued with the following

steps:

a)

b)

d)

Estimate the dose using (2.3); the result is assigned to the closest bin
and becomes the new T}, for the next iteration. The bin is based on the

bin size specified in the Data Input step; the first bin is the bin size then

and 1 binis i*bin size, where i=1 2, ...

Calculate the Var(7'p) by application of the delta method;
Calculate a 100(1-a)% confidence interval about 7, (using a t-critical

value ¢ where n is the number of observations and p is the

al2,n—p>
number of parameters estimated);

The possible causes of inability to compute a confidence interval are:
1) Failure of the non linear regression to converge; or

11) The Hessian is singular.

5) There are two possible ways to stop the study from a pharmacodynamic

perspective.
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a) Once the confidence interval is calculable the algorithm is designed to
stop if:
1) The length of the confidence interval is less than %2 the bin size; or
i1) The length of the confidence interval is less than the bin size and the
same dose was chosen three consecutive times.
b) If the number of dose multiplications defined in the Data Input step
occurs then the study stops; and
c¢) If the maximum number of iterations or dose levels occur (as defined in
the Data Input step) then the study stops
6) All stopping rules sre checked and if none are met, return to step 2c and repeat
the process.
The stopping rules in this section are not based on safety considerations. This will be

addressed in the next section.

2.3 DOSEFIND Algorithm Adjusted for Safety Considerations

Depending on non-clinical toxicology information, the application of the dose multiplier
and/or dosage increase can be altered for safety considerations. Also, alternative rules can
be defined for either stopping the study or changing the next dose due to safety concerns.
Safety of the subjects is paramount and, therefore, stopping rules for safety concerns must

be independent of and supersede stopping rules based on PD effects. In general, it is



47

reasonable to expect that the chance of observing a DLT increases with dose level. Under
this assumption, studies are typically stopped when two or more DLTs occur at one dose
level. Without supporting dose-response information, additional trials may be planned and
conducted based on the observed MTD. However, if it were known that the desired dose
response was not obtainable due to an MTD having been determined at a low dose, testing
of the compound would stop. Alternatively, having knowledge of the dose response earlier
rather than later in the drug development process allows for more efficient dose response
designs and better choices of dose selection for PoC studies, resulting in substantial

reductions 1in the number of clinical trials that need to be executed.

The flow diagram in Figure 2.2 is an update of Figure 2.1 to include accounting for the
occurrence of adverse events Three additional steps (7-10) are added to the procedure, and

this explanatory text follows the diagram.
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Figure 2.2: Flow Diagram Adjusted for Safety Effects
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Steps 7-10 are described as follows:

7) Check for the occurrence of adverse events. If an adverse event is observed then

8) Check to see if the frequency of adverse events exceeds 33% for an observed
dose level or for the study population. If so, then the study stops;

9) If not, permanently reduce the dose multiplier by a pre-specified amount; and

10) Assign the next dose to be the smaller of the previous dose or the current

updated dose.
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Assuming that, the probability of observing an adverse event increases with increasing
dose levels, the dose multiplier is permanently reduced once an adverse event is observed.

This rule results in a more conservative method due to the need for patient safety.

2.4 Mlustration of the DOSEFIND Approach

An example is presented to illustrate the DOSEFIND method. First, pharmacodynamic
data observed from a clinical trial was fit using a nonlinear logistic model to estimate
values for 7, ¥ and B and since we are interested in suppression of the PD marker, & is
set to zero. The variance used in the illustration and the simulations were based on
assuming a quasi-likelihood approach and with Var(Y )= zu(1 - t) . The choice of ¥ (u)is
based on the assumption that the response variable takes on values between 0 and 1. Thus,

the maximum variance would be expected when the average response is estimated as 0.50.

Using the biomarker suppression results, the predicted sigmoidal curve from the nonlinear
logistic fit is presented in Figure 2.3. The non-linear logistic fit of the PD data from a
clinical trial using Drug X resulted in estimates for 7, ¥, f,and S of 0.0461, 0.6891,
-2.296 and 0.5979, respectively. The Tp associated with the target threshold level

displayed in Table 2.1 1s based on these parameter estimates. It is important to note that

the data used in this example was simulated assuming these parameter estimates.
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Table 2.1: Expected Values of Tp for the Given Level of Desired Response

Desired Response or | Target Dose
Target
Threshold ( Hr, )

0.55 6.14

Figure 2.3: Clinical Trial Non-Linear Sigmoidal Curve Fit
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Before proceeding with this example, values for the input criteria (target threshold effect,
dose multiplier, bin size and initial dose levels) must be assigned. For the purpose of this

example, the target threshold effect is defined to be 0.55, the dose multiplier is defined to

be 2, the bin size is defined to be one unit and the initial dose levels d” are defined to be

1.25, 2.5 and S units.

With regard to the number of subjects at each dose, one subject is assigned to active
treatment and one is assigned to placebo at the first three dose levels. At each subsequent

dose level, three subjects are assigned to active treatment and one is assigned to placebo.

The stopping rules are defined as:

a) If the dose increase is doubled six times the study stops or;

b) If the desired width of the 95% confidence interval is /% the bin size or if the
dose level remains constant for three consecutive iterations and the confidence
interval width is less than the bin size, the study stops.

The input criteria, sampling schema and stopping rules defined above were applied to the

simulated responses for the first three doses resulting in the data displayed in Table 2.2.
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Table 2.2: Simulated PD Responses for the Initial Three Dose Levels and the
Associated Placebo Subjects

Response Dose Units
0.202 1.25
0.114 0.00
0.266 2.50
0.048 0.00
0.334 5.00
0.088 0.00

Using these data, a non-linear logistic model was fit with the starting values for ¥, £, and
B, of 1.00, -2.102 and 0.2830, respectively. While this is a sufficient amount of data to fit

a curve the result is well below the desired threshold effect. The results of the initial non-

linear regression resulted in estimated values
for 3, = —1.0698, 3, =1.1054 and #=0.33145. The non-linear logistic curve for these

parameter estimates is presented in Figure 2.4.
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Figure 2.4: Initial Iteration Illustrating the Sequential Approach
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Since ¥ is less than the target threshold effect (0.55), the estimate for the target dose is
calculated as the maximum of T or the dose multiplier is applied to the previous dose
resulting in a dose of 10 units. Next, three active subjects and one-placebo subject were

simulated at the new dose level and the results are shown in Table 2.3.
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Table 2.3: Simulated PD Responses for the Fourth Dose Level and the Associated Placebo

Subject
Response Dose Units
0.722 10.0
0.749 10.0
0.668 10.0
0.042 0.00

Adding these data to the previous data and executing the non-linear regression, results in

values for BO ,Bl and ¥ of -2.07356, 0.40014 and 0.81388, respectively. In this iteration,

the value of ¥ is greater than 0.55, which results in calculated dose of 7.01759 and a target

dose of 7 units. Since the number of iterations is greater than 1 and ¥ is greater than 0.55,

the delta method is executed to estimate the variance of the dose and its confidence

interval. With the t-critical value of 2.364, the 2 width of the 95% confidence interval was

1.800. Since the value of the 2 width of the 95% confidence interval is greater than 0.50

(Y2 bin size), the next iteration will be performed. The results of this iteration are displayed

in Figure 2.5.
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Figure 2.5: Second Iteration Ilustrating the DOSEFIND Method
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Continuing the process and applying the above criteria, a total of five iterations of the
simulation were required to obtain the stopping criteria. The complete list of the simulated

doses and responses are shown in Table 2.5 and Figure 2.6.
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Table 2.4: Simulated PD Responses and Dose Units for Iterations Three through Five

Response Dose Units Iteration #
0.861,0.473, 0.616 7.00 3
0.103 0.00
0.725, 0.528, 0.581 6.00 4
0.056 0.00
0.686,0.712, 0.610 6.00 5
0.076 0.00

These simulations produced estimates for 3, 3, ¥, actual dose, target dose, Var (f D) and

¥ width of the 95% confidence interval. Complete results of all iterations are displayed in

the Table 2.5.

Table 2.5: Ilustration Results for Sequential Approach to Dose Finding

Iteration Bo B] Actual | Target | p,, ( j~D ) 72 95%
Dose Dose CI
(7o)
1 -1.0698 1.1054 0.33145 - 10.0 - -
2 -2.07356 | 0.40014 | 0.81388 | 7.0176 7.0 0.7612 1.800
3 -2.05163 | 0.49431 | 0.76334 | 6.0664 6.0 0.5695 1.254
4 -2.10020 | 0.55409 | 0.74503 | 5.6615 6.0 0.2968 0.633
5 -2.1183 0.60724 | 0.73635 | 5.2707 5.0 0.2121 0.444

The stopping rule of /2 the width of the 95% confidence interval being less than 0.500 is

met at the fifth iteration. Graphical representations of all five iterations are represented

Figure 2.6.
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Figure 2.6: Graphical Display Results of All Five Iterations
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Using only 15 subjects (on active drug) the DOSEFIND method versus 20 (on active drug)
from the clinical trial data (see Figure 2.3). The DOSEFIND method was able to produce a
dose response curve in the simulated example with similar parameter estimates to the
“truth” in the simulated study. The DOSEFIND method estimated the target to be either 5
or 6 units (5.27 + 0.44) and yielded a dose response curve that is presented in Figure 2.7.
In the clinical trial, data from 40% (n=10) of the subjects provided no dose response
information (i.e., not in the linear portion of the curve). In contrast, data from all of the

subjects in the DOSEFIND approach were in the linear portion of the dose response curve
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and subsequently provided information that describes the dose response shape. In the
DOSEFIND method, data from all of the subjects were in the linear range, and 13 of the 15
subjects were between 5 and 10 dose units. In the clinical trial, data there were data from 5
subjects, each at 5 and 10 dose units, respectively, but none of these subjects were at dose
levels between 5 and 10 units. In fact from the DOSEFIND estimated curve, other target

doses (f” ) can be subsequently estimated. That is, the DOSEFIND method can be used to

provide dose estimates that represent the ED10, ED50 and ED90, for example.

Figure 2.7: Example Study Final Dose Response Curve with Simulated Response Data
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In the next chapter we will demonstrate, via simulations, that the DOSEFIND method can

find the expected target dose from the clinical trial on average.



CHAPTER 3

3.0 Introduction

The simulation study was designed to demonstrate the ability of the DOSEFIND method to
effectively generate an accurate target dose, demonstrate where the method is robust,
evaluate alternative non-linear functions (the Gompertz and Michaelis-Menten) and
examine the effects of subject adverse events on the method. A target threshold of 0.55

was chosen for convenience only. Ten simulations each of size (n=100) were generated

using various values of the slope(/3, ), intercept (/) and various numbers of patients

assigned to either active treatment or placebo and various non-linear models. Parameter
estimates, the predicted target dose, associated confidence interval, sample sizes and
failure rates from each simulation run will be presented. The simulation failure rate was
defined as the percentage of simulations that have either had the occurrence of six dose
doublings, three consecutive replicates of the same dose and a !> width 95% confidence
interval length less than the bin size, or 27-dose levels achieved without attaining a
confidence level of length less than bin size. In addition, for the adverse events simulation,
the failure rate will represent the number of trials stopped due to occurrence of adverse

events.

60
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In Section 3.1 the simulation plan and design is described. The results and a discussion are

presented in Section 3.2.

3.1 Simulation Plan and Design

One thousand studies were simulated with the following characteristics:

E(Y)=u, Var(Y)=u(1- u)and using a normal random number generator such that

yi = Mj +z,J7u; (1— y;) , where z is a standard normal random variable.

Next, the form of the non-linear function is described. A logistic model to estimate a

sigmoidal dose response curve will be defined using (2.1), or:

G(0)=yF(d;B)= L G.1)
_(ﬂ0+ﬂ1d)

1+e

The estimate of the target dose Tp using (2.2) is

log (s, /(v t, )= B

T,=F (u-2)/y;B)= 3

For the logistic model, the partial derivatives with respect to estimated parameters

7, B3, and /3, and the covariance matrix of ¥, £, and 3 are shown as:
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o, 1

= 3.2
B, B o
o7, 1 Hr

D___"|] b |_ 3.3
aﬁl )Blzl: Og[}/'—ﬂTDJ ﬁo:l ( )
oT, 1 1

D—_ — 3.4
87/ [7_117,)][/51] ( )

and His defined as H :{
of, If Iy

oT, 9T, aTD}

Then Var(T'p)=HXH (for large samples) and X is derived as described in

Chapter 2.

The partial derivatives for G (0)are
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Two additional non linear models the Gompertz and Michaelis-Menten that will be used in

simulations are described using (2.1).

—e(— d
Gompertz: G(G):;/F(d;B):}/e e (’BO+’BI )

Michaelis-Menten: G(0)=oa+yF(d;B)= a+¢};—dd
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The estimate of the target dose Tp using (2.2) for the Gompertz and the Michaelis-Menten

arc:

—log(log(7/1))- B,

Gompertz T, =
7 B,
and
4
Michaelis-Menten 7, = M
(r-u+a)

The partial derivatives for the Gompertz and Michaelis-Menten models are also provided.

The Gompertz partial derivatives from (2.3) are:

or, 1

__L 32
B, B G2
‘32) :—é{log[log(%ﬂ+ ﬁo} (3.3)
aT, :_{ | }
oy 9B, (log 7/ )

(3.4)

and His defined as H = [aTD T, T, } i

B, I Iy
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Then Var(Tp)=HXH' and X are derived as described previously and the partials

derivatives for G(0)are

The Michaelis-Menten partial derivatives from (2.3) are:

o,  Uu-«a
9  y-pu+ta

(3.2)
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aTD —¢(ﬂ—a)
= 33
a}/ (7_#_'_&)2 ( )
a7, _ -0y
oo (y—u+a)
(3.4)

and His defined as H = [aTD JoT, 9T, J )

00 Jdy Jda

Again Var(Tp)=HZIH and X are derived as described previously and the partials

derivatives for G(0)are

(i) (4)
oG  d
() G) ()
oy ¢ +d
(0 @) @)
oG _ v d
@ @ )
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The numbers of patients assigned to active and placebo dose groups are varied across the

runs of the simulations. The four different assignment schemas are:

1) One subject on active treatment and one subject on placebo at each dose level
(1-1, 1-1)

2) One active and one placebo subject at the initial three dose levels and then three active
and one placebo subject at each additional dose level (1-1, 3-1)

3) Three active and one placebo subject at each dose level (3-1, 3-1)

4) Three active and one placebo at the initial three dose levels and then one active and one

placebo subject at each additional dose level (3-1, 1-1)

Various shapes of the logistic model will be simulated. The shape of the logistic model is
modified by choosing different slopes () and intercepts( /3, ). The various parameters
used are detailed below. In all three cases the values for 7 and yare 0.0461 and 0.6891,

respectively, for simulation of data.

1) Bo=-2.296 and B, = 0.5979, Base Model (SIM 1)
2) Bo=-5and B,-1.8, Steep slope (SIM 2)

3) Bo=-2.296and B, = 0.2969, Shallow slope (SIM 3)
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A graphical representation of the various parameter estimates is presented in Figure 3.1.

These three curves will allow dose estimation for both steep (f, =1.8) and
shallow (5, =0.2969) slopes, in comparison to the base model, which uses the example
data set slope (B; = 0.5979) estimate.

Figure 3.1: Non-Linear Logistic Using Various Estimates for By and 1, Base Model (R1),
Steep Slope (R2) and Shallow Slope (R3)
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Two alternative non-linear models, the Gompertz (SIM 4) and the Michaelis-Menten
SIM 5) will also be evaluated. The parameter values for simulation for the Gompertz

model are y = 0.6891 and 1= 0.0461, Bo=-2.296 and B, =0.5979. The parameter values for
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simulation for the Michaelis-Menten are y = 0.7752 and, 1 = 0.0358, a = 0.0592, and ¢ =

4.4556. The graphical displays of these two functions are presented in Figure 3.2. For the
Gompertz and Michaelis-Menten, the simulations were run with one active and one
placebo subject at the initial three dose levels and then three active and one placebo subject

at each additional dose level (1-1, 3-1).

Figure 3.2: Gompertz (R1) and Michaelis-Menten (R2) Non-Linear Functions
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The base nonlinear logistic model with a curve estimating the probability of an adverse

event (SIM 6) is presented in Figure 3.3. This simulation was executed to evaluate the
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ability of the DOSEFIND method to adjust to adverse effects and safety considerations.

For this particular simulation, the (1-1, 3-1) sampling schema was chosen because all 1000
runs of the (1-1, 3-1) simulation successfully converged for the base model. Therefore,
when applying the additional criteria that allow occurrences of adverse events the run

failures were assumed to be due to the occurrence of an adverse event.

Figure 3.3: Non-Linear Logistic (R1) with Adverse Event (AE) Probability Curve
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Finally, many early trials in man (FIM or early dose finding trials) use a fixed set of doses.

Hence, simulations using a fixed set of doses 0.5, 1, 2, 4, 8 and 16 tablets (SIM 7) will be



71

presented. This set of dose levels was chosen because it represents six consecutive
doublings of the initial dose. This is a common approach in early trials in humans for

evaluation of MTD and dose response.

Multiple models from the class of u =+ yF (D;0) were chosen to show the utility of the
DOSEFIND method. SIM 7 is used to evaluate asymptotic relative efficiency (ARE) which

1s the ratio of the Var(f" D ) of the DOSEFIND method (ngim) and the usual fixed dose

approach (6Fixpess). The ARE of the DOSFIND method is shown to be superior to the
tixed dose approach. The squared bias and mean square error (MSE) for SIM 1 — SIM 3 is
calculated to demonstrate the long term average error. Finally, a summary of the relative
cost is examined. The cost is based on the number of subjects needed on average for SIM 1

— SIM 3 versus the fixed dose design.

3.2 Simulation Results of the DOSEFIND Approach to Finding a Target Dose

The expected value of the Tp was computed from (2.3), with a target threshold effect of
0.55, for SIM 1 — SIM 5 using the example clinical trial data to estimate the parameters for
each respective simulation. The expected Tp for the target threshold effect of 0.55 is listed
in Table 3.1. When the DOSEFIND method results in estimates close to the expected Tp,
the DOSEFIND method will be evidence that the method can reproduce the dose response

curve.
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Table 3.1: Expected Values of Tp for the Target Threshold Effect

Dose Levels
Target SIM 1 SIM 2 SIM 3 SIM 4 SIM 5
Threshold | Non-Linear | Larger ; | Smaller f; | Gompertz Michaelis-
Effect Logistic Menten
0.55 6.14 3.54 12.36 6.33 7.69

The results of the base nonlinear logistic model (SIM 1), using the parameter estimates
from the example data set, are presented in Table 3.2. For this case, the expected Tp result
1s 6.14, and the 95% confidence interval contains this result for all four sampling scenarios.
Further, for sampling scenarios (1-1, 3-1) and (3-1, 3-1), the width of the 95% confidence
interval is less than the bin size of one unit. The four sampling scenarios averaged between
6 and 9 dose levels and 18 to 26 subjects (see Table 3.8). Thus, under various sampling
conditions the results of the base nonlinear logistic model (SIM 1) were consistently
reproducible, and the sample sizes were smaller than the fixed dose design (n=36).

Finally, the asymptotic relative efficiency to a fixed dose design is clearly superior in all

four cases, ranging from 35%-50%.
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Table 3.2: Results from SIM 1 (10 simulations of size n=100 each) for Four Sampling

Scenarios

Desired Response: 0.55 and Desired Target Dose: 6.14

Run’ Mean Parameter Estimates (Standard Error)
Tp Dn Vo-width 95% CI | ARE
1-1,1-1 |6.18(0.060) |9.00(0.306) | 0.639 (0.017) 50%
3-1,1-1 16.09(0.047) | 7.98(0.2001 | 0.583 (0.004) 47%
1-1,3-1 |6.21(0.035) |6.99(0.108) |0.466 (0.017) 37%
3-1,3-1 [6.15(0.036) |6.40(0.082) | 0.435(0.015) 35%

Values of Parameters for simulation of data y = 0.6891, By--2.296 B,-0.5979 and
T=0.0461.
Dy 1s the average number of dose levels for each simulation scenario
Initial starting doses: 1.25, 2.5 and 5 tablets.
Asymptotic Relative Efficiency (ARE): GZSim/GZFiXDose.
" 1-1, 1-1: One subject on active drug and one subject on placebo at each dose
level.
3-1,1-1: Three subjects on active drug and one on placebo at the first three dose
levels, then one subject on active drug and one on placebo at each
subsequent dose level.
1-1,3-1: One subject on active drug and one on placebo at the first three dose
levels then three subjects on active drug and one on placebo at each
subsequent dose level.
3-1, 3-1: Three subjects on active drug and one on placebo at the each dose
level.

To evaluate the effect of a steep slope (SIM 2) values for £, and 3 were set to —5 and 1.8,

respectively, for data simulation. Under these conditions, the desired target dose was 3.54
tablets at a target threshold effect of 0.55. The 95% confidence intervals for SIM 2
contained the desired target dose (3.54 tablets) for all four sampling schemas (1-1, 1-1),
(3-1, 1-1), (1-1, 3-1) and (3-1, 3-1). The average number of dose levels was 5 for each
sampling schema and the sample size ranged from 10 to 20 patients (see Table 3.8). Again
the results are consistently reproducible and considerably fewer subjects are needed than

the fixed dose approach (n=36). The asymptotic relative efficiency with respect to the
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fixed dose design was clearly superior (18%-35%). This result was not unexpected because
the upper plateau of the sigmoid shape is reached between 4 and 5 tablets, with the steep
slope. In contrast the fixed dose design dose levels of 8 and 16 tablets do not contribute to

the evaluation of the dose response curve. The resultsof SIM 2 are presented in Table 3.3.

Table 3.3: Results from SIM 2 (10 simulations of size n=100 each) for Four Sampling

Scenarios
Desired Response: 0.55 and Desired Target Dose: 3.54
Run’ Mean Parameter Estimates (Standard Error)
Tp Dn Y2-width 95% CI ARE
1-1, 1-1 3.72 (0.052) 5.19(0.031) 0.192 (0.0061) 35%
3-1,1-1 3.67 (0.023) 5.02 (0.014) 0.150 (0.0041) 29%
1-1, 3-1 3.69 (0.038) 5.09 (0.040) 0.126 (0.0056) 24%
3-1, 3-1 3.71(0.037) 5.01 (0.008) 0.089 (0.0031) 18%

Values of Parameters for simulation of data y = 0.6891, Bo=-5 B,=1.8 and
1=10.0461.
Dy is the average number of dose levels for each simulation scenario
Asymptotic Relative Efficiency (ARE): Gng, B]/CzpixDosc.
" 1-1, 1-1: One subject on active drug and one subject on placebo at each dose
level.
3-1,1-1: Three subjects on active drug and one on placebo at the first three dose
levels, then one subject on active drug and one on placebo at each
subsequent dose level.
1-1,3-1: One subject on active drug and one on placebo at the first three dose
levels, then three subjects on active drug and one on placebo at each
subsequent dose level.
3-1, 3-1: Three subjects on active drug and one on placebo at the each dose
level.

To evaluate the effect of a shallow slope in SIM 3, values for /3 and 3, were set to -2.296

and 0.2969, respectively, for data simulation. For SIM 3 the desired target dose was 12.36

tablets at a target threshold effect of 0.55. Under this scenario, the desired target dose
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(12.36 tablets) for all four sampling schemas (1-1, 1-1), (3-1, 1-1), (1-1, 3-1) and (3-1, 3-1)

was within the 95% confidence interval. The sample sizes ranged from 34 to 46 patients
(see Table 3.8), which is greater than the fixed dose sample size of 36. Additionally, for
simulations (1-1, 1-1) and (3-1, 1-1) a failure rate of 24% was observed (see Table 3.7).
While disappointing, this result is not surprising considering that maximum variability
occurs near the mid-point, and sparseness of the data in this area where the largest
variability is expected. This is further demonstrated in the SIM 3 sample schemas (1-1, 3-
1) and (3-1, 3-1) in which failure rates of 1.5% and 1.4%, respectively (see Table 3.7) were
observed. This suggests that the DOSEFIND method may not be the best choice if a very
shallow slope is anticipated, despite the fact that the relative efficiency with respect to the
fixed dose design 1s better. Hence, under these conditions a fixed dose approach may be

more appropriate. Table 3.4 displays the results from SIM 3.
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Table 3.4: Results from SIM 3 (10 simulations of size n=100 each) for Four Different
Sampling Scenarios

Desired Response: 0.55 and Desired Target Dose: 12.36

Run Mean Parameter Estimates (Standard Error)

Tb Dn V2-width 95% CI | ARE
1,1-1 [ 12.34(0.088) | 16.87(0.456) |0.8467(0.013) 25%
1,1-1 1 12.23(0.100) | 16.09 (0.448) | 0.8326 (0.007) 25%

-1,3-1 [ 12.38(0.064) | 11.90(0.403) | 0.7284 (0.019) 22%
1,3-1 [ 12.31(0.051) |11.51(0.423) |0.7038(0.017) 21%

Values of Parameters for simulation of data y = 0.6891, Bo=-5 ,=1.8 and
1=10.0461.
Dy is the average number of dose levels for each simulation scenario
Asymptotic Relative Efficiency (ARE): 02Lgr51/02pixposc.
" 1-1, 1-1: One subject on active drug and one subject on placebo at each dose
level.
3-1,1-1: Three subjects on active drug and one on placebo at the first three dose
levels, then one subject on active drug and one on placebo at each
subsequent dose level.
1-1,3-1: One subject on active drug and one on placebo at the first three dose
levels, then three subjects on active drug and one on placebo at each
subsequent dose level.
3-1, 3-1: Three subjects on active drug and one on placebo at the each dose
level.

Three additional simulations using two alternative nonlinear sigmoidal models (Gompertz
and Michaelis-Menten) and the non-linear logistic with the safety adjustment as described

previously were run for comparison.

For a target threshold effect of 0.55, the target dose levels for the nonlinear logistic, the
Gompertz and the Michaelis-Menten were 6.14, 6.83 and 7.69 tablets, respectively. All
three simulations were run with the (1-1, 3-1) sampling schema, only. The 95%
confidence intervals for each case included the target dose level for each respective model.

The Gompertz performed similarly to the Michaelis-Menten with a relative efficiency of
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91%. The nonlinear logistic with safety adjustment applied produced similar results as the
base nonlinear logistic model. However, for the given AE probability curve, 19.8% of the
runs would be halted for occurrence of a DLT. Table 3.5 displays the results of SIM 4,

SIM 5 and SIM 6.

Table 3.5: Results from simulation (10 simulations of size n=100 each) for the Gompertz
(SIM 4), the Michaelis-Menten Nonlinear (SIM 5) and the Non-Linear Logistic
with Safety Adjustment (SIM 6) Models

Desired Response: 0.55
Run’ Mean Parameter Estimates (Standard Error)

Tp Vs-width 95% CI Var(Tp)
Gompertz 6.83 (0.031) 0.6777 (0.0189) 0.3304 (0.009)
Michaelis-
Menten 7.44 (0.058) 0.7378 (0.020) 0.3618 (0.010)
Non-linear
Logistic + Safety 6.22 (0.055) 0.4731 (0.020) 0.2233 (0.010)

Values of Parameters for simulation of data:
Gompertz: y = 0.6891 and 1 = 0.0461, By =-0.6804 and B, =0.3812
Michaelis-Menten y = 0.7752 and t = 0.0358, o = 0.0592, and ¢ = 4.4556
1-1,3-1: One subject on active drug and one on placebo at the first three
dose levels, then three subjects on active drug and one on placebo
at each subsequent dose level.
In order to evaluate the efficiency of the DOSEFIND method for the three non-linear
logistic simulations (SIM 1 — SIM 3), a simulation using a fixed set of dose levels (SIM 7)

was performed. The fixed dose design was a natural choice as many clinical and

non-clinical trials are based on this sampling scheme. The fixed dose design was run for
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SIM1, SIM2 and SIM 3. The expected target dose for the three non-linear logistic

simulations was 6.14, 3.54 and 12.36, respectively. The results of SIM 7 are presented in

Table 3.6.

Table 3.6: Results from SIM 7 (10 simulations of size n=100 each) for Fixed Dose Levels

Desired Response: 0.55
Run Mean Parameter Estimates (Standard Error)
Tp Vo-width 95% C1 | Var(Tp)
Logistic 6.21 (0.032) 1.212 (0.011) 0.596 (0.005)
Steep By 3.62 (0.010) 0.481 (0.004) 0.236 (0.002)
Shallow B, 12.62 (0.059) 3.335(0.937) 1.639 (0.460)

Values of Parameters for simulation of data:

Constant across all simulations y = 0.6891 and 1 = 0.0461.

Non-Linear Logistic: Bo--2.296 and 1= 0.5979

Steeper Bi: Bo--5 and B;= 1.8

Shallow B;: Bo=-2.296 and ; =0.2969

Dose levels 0.5, 1, 2, 4, 8 and 16 tablets
For each of the six simulations (SIM 1- SIM 6), the observed rates of stopping before the
convergence of the confidence interval, the sample sizes and the number of dose levels for
each respective run are presented in Tables 3.7 and 3.8 below. Both SIM 1 and SIM 2
provided good response with respect to the target dose and few or no observed failures. As
previously discussed, SIM 3 did not perform well for runs (1-1, 1-1) and (3-1, 1-1), but
failures dropped below 2% for runs (1-1, 3-1) and (3-1, 3-1). SIM 4 (Gompertz) and SIM 5
(Michaelis-Menten) had observed failure rates of 4.5% and 3.3%, respectively. Finally,

SIM 6, which uses the same parameter estimates as SIM 1, with the addition of safety

considerations, had 19.8% of the runs stop due to adverse events.
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Table 3.7: Observed Simulations that Stopped Before Convergence of the Confidence

Interval
Stopping Rates for Each Simulation
SIM 1 SIM2 | SIM3 SIM 4 SIM 5 SIM 6
Non-Linear | Larger | Smaller | Gompertz | Michaelis- | Non-Linear
Logistic B B Menten Logistic +
Run Safety
1-1, 1.6% 0% 24% - - -
1-1
3-1, 0.4% 0% 24% - - -
1-1
1-1, 0% 0% 1.5% 4.5% 3.3% 19.8%
3-1
3-1, 0% 0% 1.4% - - -
3-1

* Percentage of runs that stopped due to an adverse event.

For reference, recall that the fixed dose design used 6 dose levels and 36 patients. SIM 1
and SIM 2 had sample sizes less than the fixed dose design at the various sampling
schemas evaluated. In general, the (1-1, 3-1) run provides the optimal choice for SIM 1 and
SIM 2 in terms of the failure rate, predicted sample size and number of dose levels. SIM 3
requires a larger sample size than the fixed dose except for the (1-1, 1-1) run. However,
run (1-1,1-1) for SIM 3 has a 24% failure rate which is not desirable, and thus, it is
recommend that the fixed dose design be applied when SIM 3 conditions are anticipated.
The Gompertz (SIM 4) required the same sample size as the fixed dose design, while the
Michaelis-Menten (SIM 5) requires a larger sample size compared with the fixed dose

design.
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Table 3.8: Estimation of Number of Dose Levels and Associated Sample Size for each

Simulation
Sample Size and (Relative’ Cost) for Each Simulation and Run
SIM 1 SIM 2 SIM 3 SIM 4 SIM 5 SIM 6
Non-linear
Non-Linear | Larger | Smaller | Gompertz | Michaelis- Logistic +
Run | Logistic B By Menten Safety
1-1, 18.0 10.4 33.7 - - -
1-1 (50.0%) | (28.9%) | (93.6%)
3-1, 16.0 16.0 38.2 - - -
1-1 (44.4%) | (44.4%) | (106%)
1-1, 20.0 14.4 41.6 36.0 41.2 20.8
3-1 (55.6%) | (40.0%) | (116%) (100%) (114%) (57.8%)
3-1, 25.6 20.0 46.1 - - -
3-1 (71.1%) | (55.6%) | (128%)

* - Relative to the fixed dose design
An examination of the distribution of the target doses for each simulation set indicates that
the DOSFIND method captures the expected target dose. The mean estimated Tp, the
associated 95% confidence interval and the expected Tp, for the distribution of each
simulation are displayed in Table 3.9. These results show that the mean Ty, of the
distribution of each simulation was contained within the distribution 95% confidence
interval. Across a range of different curves (SIM 1-SIM 3 and SIM 6) and different
nonlinear models (SIM 4-SIM 5), DOSEFIND was consistent in reproducing the expected
Tp. However, the confidence interval coverage with the DOSEFIND is not nominal. That
is, on the average the Tp will not be contained in the confidence interval 95% of the time.
This is because the DOSEFIND method uses the width of the confidence interval as the

key stopping rule and the 95% confidence intervals computed are uniformly small with
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little variability in the range of the confidence intervals, by design. So, even though we are

using the usual approach to calculate the 95% confidence interval, it is a stopping rule

criterion. Thus, it should not be used in an interpretive sense to examine coverage

probability.

Table 3.9: Target Dose 95% confidence intervals of the distribution for each simulation

Target Dose 95% Confidence Intervals
SIM 1 SIM 2 Larger SIM 3 SIM 4 SIM 5 SIM 6
Non-Linear B Smaller B, Gompertz Michaelis- Non-linear
Logistic Menten Logistic +
Safety
Run Tp=6.14 Tp=3.54 Tp=12.36 Tp=6.83 Tp=7.69 Tp=6.14
1-1,1-1 6.17 3.69 12.34 - - -
(4.71, 7.68) (3.06,4.68) | (9.45,14.01)
1-1,3-1 6.20 3.66 12.40 6.82 7.42 6.19
(5.03, 7.60) (3.18,4.48) |(10.40,14.12) | (4.86,8.77) | (5.32,9.07) (5.07,7.69)
3-1,1-1 6.09 3.66 12.24 - - -
(5.50,7.23) (3.20,4.32) (9.59, 13.94)
3-1,3-1 6.15 3.63 12.32 - - -
(5.17,7.33) (3.234.14) | (10.32,14.12)

An examination of the results of the confidence intervals based on the actual dose (rather

than the bin dose) and the delta method indicates that the 95% confidence interval contains

the expected Tp, for each simulation. The distributions for each simulation can be is

presented in Appendix B. The results of the confidence intervals from the delta method

computations are presented in Table 3.10.
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Table 3.10: Actual Dose 95% confidence intervals of simulation results (delta method)

Target Dose 95% Confidence Intervals
SIM 1 SIM 2 Larger SIM 3 SIM 4 SIM § SIM 6
Non-Linear By Smaller B, Gompertz Michaelis- Non-linear
Logistic Menten Logistic +
Safety
Run Tp=6.14 Tp=3.54 Tp=12.36 Tp =6.83 Tp=7.69 Tp=6.14
1-1,1-1 6.17 3.69 12.34 - - -
(5.53,6.81) | (3.50,3.88) | (11.49,13.19)
1-1,3-1 6.20 3.66 12.40 6.82 7.42 6.19
(5.73,6.67) (3.53,3.79) | (11.67,13.13) | (6.14,7.50) | (6.68,8.16) | (5.71, 6.66)
3-1,1-1 6.09 3.66 12.24 - - -
(5.51,6.67) | (3.51,3.81) | (11.41,13.07)
3-1,3-1 6.15 3.63 12.32 - - -
(5.71,6.59) | (3.54,3.72) | (11.62,13.02)

A 2
A graphical display of the comparison of bias-squared (i.e., (TD —-E(Tp )) ) to the MSE

(ie., Var(f D)+ bias® ) 1s presented in Figure 3.4. As shown the bias-squared is quite

small relative to the MSE for all simulations. The base nonlinear logistic has the smallest

amount of bias and the worst case is from SIM 2 run (1-1, 1-1) with the bias being 13% of
the MSE. This is another indicator of reproducibility of the method in the long-run average

error of the Tp being quite small.
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Figure 3.4: Comparison of Bias-Squared versus Mean Square Error, for Nonlinear Logistic

Models
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An important consideration in clinical trial research is both the efficiency and cost of the

trials. For a new approach, it is necessary to demonstrate that the method will either be cost

effective, more efficient than alternative approaches or lead to a reduction in the time to get

an NCE to the market place. The standard approach in dose response trials is to

predetermine a fixed set of doses and then perform the clinical trial. Based on the

simulations presented here, the standard approach to clinical trials is inferior to the

DOSEFIND method in both cost (measured by the number of patients required) and the

efficiency (measured by the variance of the target dose). The relative efficiency is the ratio
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of the variance of the Tp from the respective nonlinear logistic model simulation to the
variance of the Tp from the fixed dose model simulation. Results of this comparison are
presented in Figure 3.5. Values less than 100 are indicative that the DOSEFIND approach
1s superior to the fixed dose approach. In all cases the DOSEFIND had better efficiency
than the fixed dose clinical trial. The models with the best efficiency results were those
that had three active patients in the dose levels following the initial three dose levels. This
result i1s intuitively reasonable as these models would have more data in the area of the
curve where the dose of interest would be expected. In terms of relative cost, the
DOSEFIND was superior with the exception of runs (1-1, 3-1), (3-1, 1-1) and (3-1, 3-1)

from the nonlinear logistic with a shallow slope (/).

In conclusion, the DOSEFIND method is shown to be reproducible with good
distributional coverage. Relative cost is the ratio of the given sample size to the fixed dose
sample size of 36. Therefore, SIM3 and SIMS5 on average require more subjects than the
fixed dose design and have a relative cost greater than 100%. More importantly however,
the DOSEFIND method has better relative efficiency and 1s more cost effective than fixed
dose approaches under most conditions. While other issues in addition to sample size are
used to determine the cost of a clinical trial, most of these costs are fixed and would be
incurred regardless of the approach taken. As shown in Figure 3.5 both SIM 1 and SIM 2
show impressive improvements in both efficiency and cost relative to the fixed dose

design. Additionally, the ability to limit the exposure of an NCE to the patient population
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during early stages of clinical trials, while simultaneously gaining gaining valuable

relevant data regarding dose response can not be overstated.

Figure 3.5: Comparison of Relative Efficiency versus Relative Cost, for Base (SIM 1),
Steep (SIM 2) and Shallow (SIM 3) Nonlinear Logistic Models
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The DOSEFIND method may take more time to complete than conventional trials when
specialized testing for PD markers or other measurements is required. However, the
DOSEFIND methods ability to obtain an accurate and effective estimate of the target dose
(see Table 3.10) and determination of an optimal dose response more than compensates

for this. Finally, by obtaining a good estimate of the dose response, the chances for
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successful choice of the proper dose for pivotal Phase III clinical trials is increased. Since
the costs of Phase III clinical trials are substantial, the choice of the dose levels for these

trials is critical.

In the next chapter we will provide a brief synopsis of the original work contained in this

dissertation and present considerations for future work on this topic.



CHAPTER 4

4.0 Introduction

The proposed method, DOSEFIND, is an adaptive design that uses accumulated data to
define the dose response model until a valid target is obtained. The DOSEFIND method
has been shown to have advantages over the fixed dose design with a sample size of 36.
The CRM (O’Quigley, 1990) , a Bayesian method, attempts to describe a dose response
curve relative to the MTD but lacks efficacy information. Piantadosi et al. (1998) and
Potter (2002) make important improvements to the CRM, but also lack efficacy
information. While it is important and useful to understand the MTD, the clinical picture
is incomplete without corresponding efficacy information. Other adaptive dose response
designs are less than optimal in that they use a fixed set of doses and thus the design may
fail to adequately sample within the linear region of the sigmoidal dose response.
Insufficient exploration of the dose-response is often a key shortcoming of clinical drug
development. Initial proof-of-concept (PoC) studies often rely on testing just one dose
level (e.g., the maximum tolerated dose) largely because there is not much additional
information on which to base the decision. With these types of PoC studies it is typically

assumed that “more is better”” and the hope 1s that the “right” dose was selected. Hence,

87
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consideration of adaptive dose-response designs in exploratory development may lead to

better choices of dose selection for PoC studies (Gaydos et al., 2006).

In Section 4.1, a summary and concluding remarks are presented for the work presented in
this dissertation. In Section 4.2, future work regarding the DOSEIND methodology will be

presented.

4.1 Discussion and Concluding Remarks

The DOSEFIND method generalizes and extends Piantadosi et al. (1998) and Potter (2002)

by doing the following:

1. Addition of “dosing bins” to accommodate differences in drug potency.

2. Application of general non-linear 3 and 4 parameter models.

3. Simulations on non-linear logistic, Gompertz and Michaelis-Menten models.

4. Provides a general structure for variance which allows for precision in estimation
of the target dose.

5. Proposes the use in early trials in humans to assess efficacy as well as toxicity.

The DOSEFIND method has demonstrated several positive qualities.
1. Using an extensive simulation study, the DOSEFIND has been shown through
simulations to be flexible in regards to the number of patients or subjects assigned

to active treatment. The method demonstrated an ability to estimate credible
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average target dose levels and confidence intervals that contained the expected
target dose.

. The sigmoidal models used in the simulations are more representative of the dose
response behavior in humans, than fixed dose approaches. For each different
sigmoid model the DOSEFIND method was able to reproduce the expected Tp and;
DOSEFIND was also efficient, in that all of the sampling approaches were, on
average, able to produce the desired target dose.

. DOSEFIND was, on average, consistently more efficient relative to a fixed dose

design using 6 dose levels. This was true for all the non-linear logistic designs and
sampling strategies. That is, the Var(fD) was higher for the fixed dose design in all

cases.

Exposure to ineffective dose levels was minimized and more dose levels that
produced a desired response were maximized.

In general, the number of subjects used in the DOSEFIND was consistently less
than the fixed dose design, the exception being a nonlinear logistic with a shallow
slope and the Michaelis-Menten models.

DOSEFIND provides an inproved understanding of dose response over the fixed
dose design or a design that looks only at safety effects. This will likely result in
better choices for the dose levels going forward into PoC trials and subsequently
Phase III pivotal trials.

. DOSEFIND allows the investigator to start looking at efficacy potential earlier than

is typically the case in current design methodology.
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9. The time spent on the DOSEFIND approach may be longer than the standard early

dose response trials. However, the potential gain in a look at early efficacy and an
ability to understand the full dose response curve could provide for substantial

savings in later phase clinical trials.

An important consideration for the DOSEFIND method is the establishment of a
meaningful dose response. Our objective is to estimate a dose for evaluation of PoC in

later trials, rather than an a spending function or an hypothesis testing approach, that

18, H 1= pu,.

4.2 Future Work

The DOSEFIND method is just the beginning of the exploration of adaptive dose response
trial design. There are several important follow-on projects that deserve consideration.

1. The DOSEFIND method currently allows only a single marker to evaluate dose
response. A modification of the DOSEFIND method allowing the use of multiple
markers would essentially allow linking one or more PD markers so that the
interrelationship of the PD markers on the Tp could be evaluated. Therefore,
instead of observing a single response, multiple responses on each subject could be
observed, and this could be multivariate or composite in nature. The generalized

method would then reflect multiple body processes. For example, one approach to
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lowering glucose is to cause glucagon-like—peptide 1 (GLP-1) levels to increase by
inhibiting dipeptidylpeptidase IV (DPP-4) levels. So, in addition to inhibiting DPP-
4 one must also consider the effect of sustained increase in GLP-1 levels, which
will lower blood glucose levels. Then reduction in blood glucose levels will result
in the desired effect of sustained reduction of HbAlc, which are glycosylated

hemoglobin levels.

. The current DOSEFIND method does not include covariates. Consideration of

covariates could provide additional explanation of the dose response curve and the
variance estimate of the Tp, which could lead to improvements in the estimation of
the confidence interval.

The DOSEFIND method does not assume any prior knowledge of the NOEL or
NOAEL. The application of threshold models to the DOSEFIND method would
provide for a maximum no effect level. An example for an exponential threshold

B(x=06)I (x> )

model is of the form y = + ye . This particular approach

assumes some understanding of the dose such that some amount greater than some
o 1s required to see any effect.

. The DOSEFIND method applies a quasi likelihood framework allowing the

Var(Y) to be of the form of 7V (u). Since the PD marker scale was on a [0, 1]

scale and the maximum variation is expected at 0.5 then the choice of z(1— 1) was

clear for our case. However, if we allow the range of PD marker to be extended

beyond the [0, 1] scale for expression or suppression of the marker of interest, then
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the parameters « and ¥ are not bounded by [0, 1]. Therefore, consideration of

different variance forms for the quasi likelihood may be more appropriate. As data
are collected reevaluation of the variance form could be conducted to determine if
an improved form exists for the quasi likelihood variance.

The DOSEFIND method only considers response in terms of a dose. Applications
using a marker versus viral or bacterial load, or some other measure rather than a
dose could be evaluated. For example, the level of the marker needed to generate
and sustain a reduction in the viral or bacterial load could be considered. This is a
simple extension of the method that would require substitution of the marker for
dose level and rescaling the change in viral or bacterial load so that its described as
suppression on a [0, 1] scale. The choice of the quasi likelihood variance also must
be evaluated.

Currently the DOSEFIND method only measures the response of one PD marker
against dose. A modification to the method would be to combine efficacy, PD and
safety together. This is essentially a variation of (1) where clinical outcomes and
safety effects are substituted or added to the evaluation of one or more PD markers.
Again the idea is to combine the various measures through a link or composite
score to be able to evaluate an overall effect on patient outcome.

Repeated measures extension with collection of multiple data points on each
subject could be considered. This approach would necessitate repeat dosing be

performed on each subject. An evaluation of both safety and the ability to sustain
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a target threshold could be considered under this proposition. This would lead to n
independent Tp’s, which could then be summarized with summary statistics.
Evaluation of sub populations (e.g., age, sex and race) is a logical extension to the
DOSEFIND method in which individualized dose response curves are considered.
That is, sub populations may behave differently and require varied dosing schemas.
This could be accomplished through stratification. However, consider applying a
function such that all the subpopulations of interest are all estimated at the same
time. This would allow simultaneous estimation of dose response curves for each
subpopulation.

Consider a study design that is based on minimum variance of Tp, but not at Tp,
necessarily. Employ an optimum criterion like minimum variance. Collect initial
dose levels and evaluate the dose response curve. Based on the evaluation,
determine where to put the next dose or doses, to minimize the variance and
optimize the slope, which would provide a Tp. Note, there are potential safety
issues because of the need to put doses much higher than the TD. Use a search
algorithm, such as, Nelder-Mede to evaluate the minimum variance as a function of
where the next dose or doses are located and how many subjects at each dose. This
could be considered in conjunction with work by Shih, et al. 2003 in examination
of dosing strategies that have multiple compounds being given at the same time.
An interesting extension to the DOSEFIND method would be to find the minimum
variance associated with the testing of complex non linear hypotheses. Suppose

there is something besides target dose, for example ED50 and ED90 and it is
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desirable to minimize both. Separate subjects into subpopulations and determine if

the dose response curves are different between the populations.
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APPENDIX A

For Tables A.1-A.5 the Run values are defied as follows:

1,1-1: One subject on active drug and one subject on placebo at each dose level
1,1-1: Three subjects on active drug and one on placebo at the first three dose levels,
then one subject on active drug and one on placebo at each subsequent dose level.
1-1,1-3: One subject on active drug and one on placebo at the first three dose levels, then
three subjects on active drug and one on placebo at each subsequent dose level.
3-1,3-1: Three subjects on active drug and one on placebo at the each dose level.

1-
3.

Table A.1: Results from SIM 1 (10 simulations of size n=100 each) for four different
sampling schemas

Desired Response: 0.55 and Desired Target Dose: 6.14
Run’ Mean Parameter Estimates and Standard Error
Y B() B] TD DN 12-95% CI EFF
1-1,1-1 | 0.8589 -2.44 0.5654 6.18 9.00 0.639 50%
(0.7876) | (0.0179) | (0.0120) (0.0604) (0.3055) (0.0173)
3-1,1-1 | 0.8407 -2.42 0.5694 6.09 7.98 0.583 47%
(0.0479) | (0.0234) | (0.0074) (0.0266) (0.2008) (0.0041)
1-1,3-1 | 0.7840 -2.39 0.5789 6.21 6.99 0.466 37%
(0.0500) | (0.0249) | (0.0033) (0.0350) (0.1082) (0.0168)
3-1,3-1 | 0.9959 -241 0.5765 6.14 6.40 0.435 35%
(0.2785) | (0.0295) | (0.0071) (0.0363) (0.0815) (0.0145)

Values of Parameters for simulation of data y = 0.6891, By--2.296 B,-0.5979 and 1= 0.0461.
Initial starting doses: 1.25, 2.5 and 5 tablets
Efficiency (EFF): st;m/GszxDose
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Table A.2: Results from SIM 2 (10 simulations of size n=100 each) for four different

sampling schemas

Desired Response: 0.55 and Desired Target Dose: 3.54

*

Run Mean Parameter Estimates and Standard Error
Y Bo B, To Dy 1,-95% CI | EFF
1-1,1-1 | 0.7441 -4.76 1.6451 3.73 5.19 0.1923 17%
(0.0094) | (0.0395) | (0.0217) (0.0523) (0.0313) (0.0061)
3-1,1-1 | 0.7094 -4.77 1.6892 3.67 5.02 0.1502 15%
(0.0012) | (0.0082) | (0.0051) (0.0226) (0.0141) (0.0041)
1-1,3-1 | 0.7350 -4.79 1.6544 3.69 5.09 0.1259 12%
(0.0038) | (0.0422) | (0.0235) (0.0378) (0.0403) (0.0056)
3-1,3-1 | 0.7127 -4.79 1.6850 3.71 5.01 0.0889 9%
(0.0015) | (0.0200) | (0.0109) (0.0369) (0.0079) (0.0031)

Values of Parameters for simulation of data y = 0.6891, By=-5 f,=1.8 and t = 0.0461.

Efficiency (EFF): ongr B]/GZFiXDose

Table A.3: Results from SIM 3 (10 simulations of size n=100 each) for four different

sampling schemas

Desired Response: 0.55 and Desired Target Dose: 12.36

E3

Run Mean Parameter Estimates and Standard Error
Y BO B| TD DN 12-95% CI EFF
1-1,1-1 | 1.0721 -2.53 0.2638 12.34 16.87 0.8467 25%
(0.2736) | (0.0496) | (0.0034) (0.0878) (0.4558) (0.0130)
3-1,1-1 | 1.1317 -2.56 0.2602 12.23 16.09 0.8326 25%
(0.2307) | (0.0416) | (0.0032) (0.1000) (0.4480) (0.0071)
1-1,3-1 | 0.8432 -2.41 0.2789 12.38 11.90 0.7284 28%
(0.0688) | (0.0214) | (0.0028) (0.0644) (0.4026) (0.0189)
3-1,3-1 | 0.9656 -2.46 0.2744 12.31 11.51 0.7038 29%
(0.1157) | (0.0478) | (0.0047) (0.0506) (0.4277) (0.0171)

Values of Parameters for simulation of data y = 0.6891, Bo=-2.296 B;=0.2969 and 1 =

0.0461.

Initial starting dose levels 0.25, 0.5 and 1 tablet
Efficiency (EFF): O'ZSmB]/GszXDOSC
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Table A.4: Results from simulation (10 simulations of size n=100 each) for fixed dose

levels
Desired Response: 0.55
Run Mean Parameter Estimates and Standard Error
y Bo B, Tp 12-95% CI o’

Logistic 0.6910 -2.29 0.6014 6.21 1.212 0.596

(0.0012) (0.0010) (0.0033) (0.0319) (0.0108) (0.0053)
LgBl 0.6929 -4.77 1.7050 3.62 0.481 0.236

(0.0008) (0.0072) (0.0053) (0.0101) (0.0035) (0.0017)
SmB1 0.7218 -2.13 0.2942 12.62 3.335 1.639

(0.0091) (0.0088) (0.0017) (0.0588) (0.9366) (0.4603)

Values of Parameters for simulation of data:
Constant across all simulations y = 0.6891 and 1 = 0.0461.
Non-Linear Logistic: fo--2.296 and ;- 0.5979
Larger B1: Bo--5 and ;= 1.8; Smaller B1: B¢--2.296 and 3, =0.2969
Dose levels 0.5, 1, 2, 4, 8 and 16 tablets

Table A.5: Results from simulation (10 simulations of size n=100 each) for the Gompertz,
the Non-Linear Logistic with Safety Adjustment and the Michaelis-Menten
Nonlinear Models

Desired Response: 0.55

E3

Run Mean Parameter Estimates and Standard Error
Y Bo B, Tp 95% Cl | Var(Tp)
Gompertz 1.286 -0.7647 0.3142 6.33 0.6777 0.3304
0.7796) | (0.0125) (0.0092) (0.0314) (0.0188) (0.0094)
Egnlslgff 0.7855 -2.389 0.5795 6.22 0.4648 0.2210
Safgety (0.0548) (0.0240) (0.0033) (0.0434) (0.1612) (0.0079)
y o 0 To 15-95% C1 o’
Michaelis- 1.3167 0.0618 12.0152 7.43 0.7378 0.3618
Menten 0.1669) | (0.0006) (2.4646) (0.0579) (0.0199) (0.0102)

Values of Parameters for simulation of data:

Gompertz: y = 0.6366 and 1 = 0.0461, Bp=-0.6804and p; =0.3812

Michaelis-Menten v = 0.7752 and t = 0.0358, a. = 0.0592, and 6 = 4.4556

1-1,1-3: One subject on active drug and one on placebo at the first three dose levels,
then three subjects on active drug and one on placebo at each subsequent dose
level.
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APPENDIX B

Figure B.1: Distribution of Simulation 1 Base Model Actual Dose Values, Sampling
Schema (1-1, 1-1)
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Figure B.2: Distribution of Simulation 1 Base Model, Actual Dose Values, Sampling
Schema (1-1, 3-1)
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Figure B.3: Distribution of Simulation 1 Base Model, Actual Dose Values, Sampling

Schema (3-1, 1-1)
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Figure B.4: Distribution of Simulation 1 Base Model, Actual Dose Values, Sampling
Schema (3-1, 3-1)
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Figure B.5: Distribution of Simulation 2-Steeper B, Actual Dose Values, Sample Schema

(1-1, 1-1)
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Figure B.6: Distribution of Simulation 2-Steeper B;, Actual Dose Values, Sample Schema

(1-1, 3-1)
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Figure B.7: Distribution of Simulation 2-Steeper B;, Actual Dose Values, Sample Schema

(3-1, 1-1)
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Figure B.8: Distribution of Simulation 2-Steeper ;, Actual Dose Values, Sample Schema

(3-1, 3-1)
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Figure B.9: Distribution of Simulation 3-Shallow ;, Actual Dose Values, Sample Schema

(1-1, 1-1)
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Figure B.10: Distribution of Simulation 2-Steeper [, Actual Dose Values, Sample Schema

(1-1, 3-1)
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Figure B.11: Distribution of Simulation 2-Steeper B;, Actual Dose Values, Sample Schema

(3-1, 1-1)
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Figure B.12: Distribution of Simulation 2-Steeper B;, Actual Dose Values, Sample Schema

(3-1, 3-1)
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APPENDIX C

Non-linear logistic base model is shown here. For all other models update the following:

1. The calculation of mu in the simulation macros to reflect the model and parameter
values for each respective model.

2. The models in the three PROC NLIN procedures must match the models in the
simulation macros

3. Target dose must be based on the model under investigation

**** Define path were programs reside and output is to be written ***%*;

%3let path = f:\Disertation;

%$let path=

C:\Documents and Settings\davenpmj.LABS\My Documents\School\Disertation;
libname ltest "&path";

***x* Write log to file prevents PC SAS from stopping because the buffer
ig full ****;

proc printto log="&path\sim.log" new;run;
options symbolgen macrogen mprint;

AKX A KA A XA A A KA A A A A A AR A A A A A A A A A A A AR KRR A A A A A A A A A A A AR A A A A AR AN A A XA XA KRN A A AR A AR h ok kx .
7

**** Data Inputs ****;
%let sdose= 1.25, 2.5, 5; * Initial starting dose levels;

%let fdose=5; * High starting dose level;

%$let thres=0.55; * Target threshold effect;

$let mstrt=9; * Start for outer loop counter;

$let mruns=10; * Quter loop counter for se calc;

$let p=3; * Number of parameters to estimate;

%let gl=1; * Initial starting point for gamma;

%let eint=25; * Number of times to run the simulation for
each NLIN run(Inner Loop);

%let kount=100; * Number of iterations of the simulation (Outer
Loop) ;

%$let numi=3; * Number of active patients at each initial

dose level;
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%let numip=1; * Number of placebo patients at each initial
dose level;

%let num=1; * Number of patients at each dose level;

$let nump=1; * Number of placebo patients at each dose
level;

%let done=0; * Used for stopping rule;

%let binsize=1; * Smallest dose increase/decrease allowed after

initial 3 doses;
KA A A A A A A A I A AT AT A A IR A AT AT AT AT AT I A I AT AT A I AT AT AT A AT A A A A AT AT A AT AR A h Ak k ok hk .
7

**** Clean out the work space before beginning run ****;
proc datasets library=work kill; quit;

**x* Delta Method if gamma is not estimable. Only use B0 and Bl ***;

’

gmacro deltal2p(n);

* Input data from PROC NLIN run;
data cvb prms;

set beta;

if upcase(_type_)="COVB" then ouput cvb;

if upcase(_type_ )="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl} into covb;
use prms; read all var {b0 bl} into parms;

* Compute values of partials for b0, and bl for each ED;
d_b0 = -1/parms(2];
d_bl=(log(&thres/ (1l-&thres))-parms[1])* (-1/(parms([2]#parms([2]));

*Build parameter vector;
beta=j(2,1,0);
beta[l,l]l=parms[1];
beta[2,1]=parms([2];

*Generate variance covariance matrix;
delta=3j(1,2,0);
deltal[l]l=d_bo0;
delta[2]=d bil;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;

* Generate macro variable to hold new variance calculation;
%if &n=1 %$then %do;
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data _null_;
set devchk;
call symput ('sdevnew', vars);
run;
%$end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',6vars);
run;
%$end;
%$put sdevnew: &sdevnew;
%put sdevold: &sdevold;
run;
$mend;

* Delta Method when gamma, B0 and Bl are estimable;
gmacro delta(n);

* Input data from PROC NLIN run;
data cvb prms;

set beta;

if upcase(_type_)="COVB" then output cvb;
if upcase(_type_)="FINAL" then output prms;
run;

proc iml;
use cvb; read all var{b0 bl gamma} into covb;
use prms; read all var {b0 bl gamma} into parms;

* Compute values of paritals for b0, bl and gamma for each ED;

d_b0 = -1/parms[2];

d_bl=(log(&thres/ (parms[3]-&thres))-parms[1])*
(-1/(parms[2]#parms[2]));

d_g=(-1/(parms[3]-&thres))* (1/parms([2]);

*Build parameter vector;
beta=3(3,1,0);
betall,l]=parms[1];
betal[2,1l]=parms([2];
beta[3,1l]=parms[3];

*Generate variance covariance matrix;
delta=3(1,3,0);

deltal[l]=d_bo0;

deltal[2]=d bl;

delta[3]1=d_g;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
create devchk from var_ed [colname='vars'];
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append from var_ed;
quit;
run;

* Generate macro variable to hold new variance calculation;
%1if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',6vars);
run;
%end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold’', &sdevnew) ;
call symput ('sdevnew',vars);
run;
$end;
gput sdevnew: &sdevnew;
gput sdevold: &sdevold;
run;
gmend;

/************************************************

Macros for generation of simulations the variance component (tau) is
the variance observed from the given data using a non-linear logistic

with a guasi-likelihood assumption of variance showing a binomial
distribution.

tau= 0.0461 gamma=0.6891, BO= -2.296,

Bl = 0.5979 are the estimates
from the BASE Logistic

Resulting suppression values can not be less than zero.

*************************************************/

* Simulate initial dose levels and subjects;
$macro sims_init (numi, seed) ;

$global sd;

data siminit;

drop i mu d;

* Generates active dose levels;
do d=&sdose;

*** Estimate mu for current target dose;
mu = 0.6891/(l+exp(2.296-0.5979*d));

do i=1 to &numi;

* Use tau, binomial distribution and randome variable from a normal
distribution to simulate a data value;

result=mu+sqrt (0.0461*mu* (1-mu)) *rannor (&seed) ;
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* If result is less than zero then force to zero;
if result <0 then result=0;
tabs=d;
output;
end;

*** Estimate mu for placebo subjects;
mu = 0.6891/ (l+exp(2.296));
do i=1 to &numip;

* Use tau, binomial distribution and randome variable from a normal
distribution to simulate a data value;
result=mu+sgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;

* Tf result is less than zero then force to zero;
if result <0 then result=0;
tabs=0;
output;
end;
end;

* Send seed value to a macro variable;
call symput ('sd', &seed) ;
run;

* Generate simulated data set;
proc append base=b2 data=siminit force;
$mend ;

* Simulate additional dose levels;
gmacro sims (num, seed) ;

%global sd;

data sim;

drop i mu;

*** Estimate mu for current target dose;
mu = 0.6891/ (1l+exp(2.296-0.5979*&dnew) ) ;
do i=1 to &num;

* Use tau, binomial distribution and randome variable from a normal
distribution to simulate a data value;
result=mu+sgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;

* If result is less than zero then force to zero;
if result <0 then result=0;
tabs=&dnew;
output;
end;

*** Estimate mu for placebo subjects;
mu = 0.6891/ (1l+exp(2.296));
do i=1 to &nump;
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* Use tau, binomial distribution and randome variable from a normal
distribution to simulate a data value;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;

* If result is less than zero then force to zero;
if result <0 then result=0;
tabs=0;
output;
end;

* Send seed value to a macro variable;
call symput ('sd', &seed) ;
run;

* Generate simulated data set;
proc append base=b2 data=sim force;
gmend ;

/*************************************

Compute logistic values for input
into reg to calculate starting values
use example clinical trials data to obtain

initial parameter estimates for NLIN run
***************************************/

data a;
set ltest.masked;
if result=0 then delete;
if dose <=50;
lres=log(result/ (l-result));
tabs=dose/5;
run;
proc reg data=a outest=initial noprint;
model lres=tabs;
run;
quit;

data _null_;
set initial;

* Push initial parameter estimates to macro variables;
call symput ('BO_I',Intercept);
call symput ('B1_I', tabs);

run;
* ok kk ok kkkhkkkhkkhkhkkhkkkkkk .
7

* Core procedure to calculate new target dose and confidence interval;
$macro testum(n) ;

data begin;set b2;run;
ods listing close;
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* Non-Linear logistic model execution;

proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl gamma=&gl;
mu=gamma/ (1+exp(-1* (b0O+bl*tabs))) ;

* quasi-likelihood distribution applicaton;
_weight_=1/(mu* (1-mu));
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=pred&n;
ods output ConvergenceStatus=conv;

run;

* Push convergence status to macro variable;
data _null_;
set conv;
call symput('cvstat',6 status);
run;

* Determine if all parameters are estimable and push result into a
macro variable;
data _null_;

set beta;
hess=0;
if trim(left(_name_)) in ("bO0","bl","gamma") then do;
if b0=. | bl=. | gamma=. then do;hess=1;end;
end;
call symput ('hesstat',6 hess);

run;

%$if &cvstat *=0 %then %do;
/****************************************
If unable to estimate gamma then force
gamma to be a value of 1.00 and re-execute
*****************************************/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (b0+bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=pred&n;
ods output ConvergenceStatus=conv2;
run;

* Push convergence status to macro variable;
data _null_;
set conv2;
call symput('cvstat2',6 status);
run;
%end;
%else %if &hesstat=1 %then %do;
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/****************************************

If Hessian is singular then force
gamma to be a value of 1.00 and re-execute
*****************************************/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (bO+bl*tabs)));
_weight_=1/(mu* (1-mu));
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=pred&n;
ods output ConvergenceStatus=conv2;
run;

* Push convergence status to macro variable;
data _null_;
set conv2;
call symput ('cvstat2',K status);
run;
$end;

* Combine convergence status and parameter estimates into macro
variable;

data _null_;
call symput ('combo', %eval (&cvstat+&hesstat));

run;

ods listing;

/*************************************************************

Generate the new Target Dose from the parameter estimates
from the NLIN logistic run.

If gamma less than or equal to the threshold then the
new dose is computed as two times previous dose.

If gamma is greater than the threshold then the new dose is
computed for the parameter estimates of the most recent
NLIN run

***************************************************************/

data c;
set beta;
iter=&n;dosecnt=&n+2;knt=&m;
if upcase(_type_)="FINAL";

* Calculate new target dose for next simulation if method converged

and all parameters estimable;
%$if &combo=0 %then %do;

* Target dose calculation if gamma is estimable and greater
than the target threshold effect;

if gamma > &thres then do;
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tdose=(log(&thres/ (gamma-&thres))-b0) /bl;
TargetDose=round ( (round (tdose, 1) /&binsize), 1) *&binsize;
end;

* Target dose calculation if gamma is estimable and less than
the target threshold effect;
if gamma <= &thres then do;
tdose=(log(&thres/ (1-&thres))-b0) /bl;
DoseCl=round( (round(tdose, 1) /&binsize), 1) *&binsize;

* Get additional possibilities for new target dose if gamma

less than target threshold effect;
if &n=1 then do;

DoseC2=2*&fdose;
end;
else do;

DoseC2=2*&dnew;

end;

* Final choice for target dose if gamma less than target
threshold effect;

TargetDose=max (of DoseCl,DoseC2) ;

if TargetDose=DoseC2 then do;

* Add one to counter that monitors number of times the dose
multiplier is used;
call symput ('count', $eval (&count+1));
end;
end;
%end;

* Calculate new target dose for next simulation if method converged
on second iteration with gamma fixed;
%else %1if &cvstat2=0 %$then %do;

*Calculate new target dose;
tdose=(log(&thres/ (1-&thres))-b0) /bl;
DoseCl=round( (round (tdose, 1) /&binsize), 1) *&binsize;

* Get additional possibilities for new target dose since gamma
inestimable;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;

* Final choice for target dose if gamma less than target
threshold effect;
TargetDose=max (of DoseCl,DoseC2) ;

if TargrtDose=DoseC2 then do;
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* Add one to counter that monitors number of times the dose
multiplier is used;
call symput('count', %$eval (&count+1));end;
%end;

* If NLIN fails to converge twice then apply dose multipler;
%1f &combo ~=0 %then %if &cvstat2”=0 %then %do;
if &n=1 then do;
TargetDose=2*&fdose;
end;
else do;
TargetDose=2*&dnew;

* Add one to counter that monitors number of times the dose
multiplier is used;
call symput ('count’', %eval (&count+1));
end;
$end;

if iter > 1 & TargetDose=&dnew then do;
* If new target dose is the same as old target dose then add one
to counter tracking this occurrence;
call symput ('dcnt', %eval (&dcnt+1) ) ;
end;

* Otherwise reset counter monitor repeats of target dose to one;
else do; call symput('dcnt',1l);end;
run;

data c¢;
set c;
* Write macro variable to the data set and initialize confidence
interval and epsilon;
kount=&count;convs=&cvstat;hessian=&hesstat;tc=0;ci_h=.;eps=1;

* Update initial parameter estimates for next iteration of NLIN run;
call symput{('b0',b0);

call symput('bl’',bl);

%if &combo=0 %then %do;

call symput('gl',gamma) ;
%end;

%else %do; %let gl=1;%end;

call symput ('dnew',6 TargetDose);
run;

* Push data points and degrees of freedom to macro variables;
data _null;

set begin nobs=nobs;

call symput ('DF',nobs-&p) ;

call symput ('NT',nobs);
run;
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* Tf NLIN converges then run delta method for either 2 or 3
parameters;
%if &combo=0 %$then %do;
%$if &gl > &thres %$then %do;%delta(&n);%end;
$else %do;%deltal2p (&n) ; %$end;
$end;
%else %if &cvstat2=0 %$then %do;
%do; $deltalp (&n) ; $end;
$end;

* Generate confidence intervals if NLIN converges;
data c;
set c;
drop _type_ _status_ _name_ _iter_ _sse_;
if &n > 1 & (&combo=0 | &cvstat2=0) then do;
tc=tinv (0.975,&df) ;
del=&sdevnew;

* Only calculate confidence interval if gamma exceeds target
threshold effect;

if gamma > &thres then do;ci_h=tc*del;end;

* If confidence interval is less than one then assign eps to zero

which will stop the procedure;

if ci_h *=. & ci_h <= &binsize/2 & gamma "“=. then do;eps=0;end;

else do; eps=1;end;

call symput ('eps’',eps);

* If confidence interval is less than two then assign eps2 to
zero which will stop the procedure if target dose has not
changed for three consecutive iterations;

if ci_h *=. & ci_h <= 1 & gamma "~=. then do;eps2=0;end;
else do; eps2=1;end;

call symput ('eps2',eps2);

end;
run;
$mend ;

* Check all stopping rules;
$macro epschk(n);
$global done;
data _null_;
%if &n >= 3 %then %do;

* Tf dose multiplier has been used 6 times then stop;
%1if &count >= 6 %then %do;call symput('done’',3);%end;

* If confidence interval is less than one then stop;
%$if &eps = 0 %then %do;call symput('done',1l);%end;

* If confidence interval is less than one and the target dose has not
changed for three consecutive iterations then stop;
%$if &eps2 = 0 %then %do;
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%1if &dcnt >= 3 %$then %do;call symput('done',2);%end;
%end;
gend;
run;
$mend;

* Main macro that executes all the above stuff;
$macro runum;

* Quter loop that determines how many sets will be executed (10 sets for
the simulations;
%$do m=&mstrt %to &mruns;

* Loop 2 that determines how many studies per set (100 for each
simulation;
2do j=1 %to &kount;

* Initialize macro variables for each series in Loop 2;
%$let cvstat2=0;
%let sdevnew=0;
$let sdevold=0;
$let dnew=0;
$let b0=&BO0_TI;
$let bl=&Bl1_TI;
$let gl=1;

glet eps=1;
$let eps2=1;
$let count=0;
$let dcnt=1;

* Tnitial three dose levels;
%sims_init (numi=&numi, seed=86019398+&j+&m) ;
$testum(l) ;
* Inner loop has remaining dose levels with maximum number of
iterations per study;
2do k = 2 %to &eint;
$sims (num=&num, seed=9302468+&m+&J *&K) ;
$testum(&Kk) ;
$epschk (&k) ;

* If stopping rule met reinitialize done depart loop and write final
iteration to data set;
%$if &done "=0 %$then %do;%let done=0;%goto fin;%end;
$end;
$fin: proc append base=sims data=c force;run;
proc datasets library=work memtype=data;delete b2; quit;
%end;
%end;
gmend ;
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runum;

proc sort data=sims;by knt;run;
proc print data=sims;run;

* See summary statistics but exclude failed runs;
proc means data=sims n mean stderr min max clm;
where kount”"=6;

by knt;

var gamma BO Bl TargetDose del dosecnt ci_h;
run;

/**********‘k*************************************

Use this to write data to permanent data sets, need to rename as
appropriate

data ltest.sims5513f1;
set ltest.sims55i3fl sims;
run;
proc print data=ltest.sims55i3fl;run;

**********************************************/

proc printto;run;
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Non Linear logistic shallow slope model, see Base model for complete
description of code;

%let path = f:\Disertation;

%let path= C:\Documents and Settings\davenpmj.LABS\My
Documents\School\Disertation;

libname ltest "&path";

proc printto log="&path\sim.log" new;run;

goptions reset=all;

goptions device=win rotate=landscape vsize=8 hsize=10.5 ftext=simplex;
options symbolgen macrogen mprint;
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* ok k ok k .
’

%let sdose= 1.25, 2.5, 5; *Intial starting dose levels;

%let fdose=5; *High starting dose level;

%let thres=0.55;

%$let mstrt=9; *Start for outer loop counter;

$let mruns=10; *Outer loop counter for se calc;

%let p=3; *Number of parameters to estimate;

%let gl=1; *Intial starting point for gamma;

%2let eint=25; *Number oftimes to run the simulation for each NLIN run
(Inner Loop);

%$let kount=100; *Number of iterations of the simulation (Outer Loop);
%let numi=3; *Number of active patients at each initial dose level;
$let numip=1; *Number of placebo patients at each initial dose level;
%let num=3; *Number of patients at each dose level;

%$let nump=1; *Number of placebo patients at each dose level;

%let done=0; *Used for stopping rule;

%let binsize=1; *Smallest dose increase/decrease allowed after inital 3
doses;
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’

proc datasets library=work kill; quit;
gmacro delta2p(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" then ouput cvb;;
if upcase(_type_)="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl} into covb;
use prms; read all var {b0 bl} into parms;
* Compute values of paritals for b0, and bl for each ED;
d_b0 = -1/parms[2];
d_bl=(log(&thres/(1l-&thres))-parms[1l])*(-1/(parms|[2]#parms([2]));
*Build parameter vector;
beta=3j(2,1,0);
betall,l]=parms[1];
betal2,1]=parms[2];
*Generate variance covariance matrix;
delta=3(1,2,0);



deltal[l]=d _bo0;
deltal[2]=d_bl;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;

create devchk from var_ed [colname='vars'];

append from var_ed;
quit;
run;
2if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',6vars);
run;
%end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',vars);
run;
%end;
%put sdevnew: &sdevnew;
$put sdevold: &sdevold;
run;
$mend;
gmacro delta(n);
data cvb prms;
set beta;

if upcase(_type_)="COVB" then output cvb;
if upcase(_type_)="FINAL" then output prms;

run;
proc iml;

use cvb; read all var{b0 bl gamma} into covb;
use prms; read all var {b0 bl gamma} into parms;
* Compute values of paritals for b0, bl and gamma for each ED;

d_b0 = -1/parms([2];

d_bl=(log{(&thres/ (parms[3]-&thres))-parms|[1])*

1/ (parms[2]#parms([2]));

d_g=(-1/(parms[3]-&thres))* (1/parms[2]});

*Build parameter vector;

beta=3(3,1,0);

betall,l]=parms[1];

betal2,1l]=parms[2];

beta([3,1l]l=parms[3];

*Generate variance covariance matrix;
delta=3(1,3,0);

delta([l]=d_bo;
delta(2]=d_bil;
delta(3]=d_g;

131



132

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%2if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars);
run;
%end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',6 vars) ;
run;
$end;
gput sdevnew: &sdevnew;
%put sdevold: &sdevold;
run;
gmend;
/************************************************
macros for generation of simulations
the variance component (tau) is the variance
observed from the given data using a non-linear
logistic with a quasi-likelihood assumption of
variance showing a bionomial distribution.

tau= 0.0461 gamma=0.6891, BO= -2.296, Bl = 0.82969 are
the estimates modified for shallow BO

resulting supression values can not be less
than zero.

*************************************************/

gmacro sims_init (numi, seed) ;
%global sd;
data siminit;
drop i mu d4d;
do d=&sdose;
mu = 0.6891/(1l+exp(2.296-0.2969*d)) ;
do i=1 to &numi;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=d;
output;



end;
mu = 0.6891/(1l+exp(2.296));
do i=1 to &numip;
result=mu+sgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=0;
output;
end;
end;
call symput('sd', &seed) ;
run;
proc append base=b2 data=siminit force;
$mend ;
gmacro sims (num, seed) ;
%global sd;
data sim;
drop 1 mu;
mu = 0.6891/(1l+exp(2.296-0.2969*&dnew) ) ;
do i=1 to &num;
result=mu+sqgrt (0.0461*mu* (1l-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=&dnew;
output;
end;
mu = 0.6891/ (1l+exp(2.296));
do i=1 to &nump;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;

tabs=0;
output;
end;
call symput('sd', &seed);
run;
proc append base=b2 data=sim force;
gmend ;

/*************************************

Compute logistic values for input

into reg to calculate starting values
***************************************/

data a;
set ltest.masked;
if result=0 then delete;
if dose <=50;
lres=log(result/(l-result));
tabs=dose/5;
run;
proc reg data=a outest=initial noprint;
model lres=tabs;
run;
quit;
data _null_;
set initial;
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call symput ('BO_I',Intercept);
call symput('B1_TI', tabs);

run;
* kk kA kA kkhkkkkkkkkkk*kk*k .
!

$macro testum(n) ;
data begin;set b2;run;
ods listing close;
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl gamma=&gl;
mu=gamma/ (l+exp (-1* (bO0O+bl*tabs)));
_weight_=1/(mu* (1-mu));

_loss_=-(result*log(mu/(1l-mu))+log(l-mu))/_weight_;

model result = mu;
output out=pred p=predé&n;
ods output ConvergenceStatus=conv;
run;
data _null_;
set conv;
call symput ('cvstat',6 status);
run;
data _null_;
set beta;
hess=0;

if trim(left(_name_)) in ("bO","bl", "gamma") then do;

if b0=. | bl=. | gamma=. then do;hess=1;end;
end;
call symput ('hesstat',k hess);
run;
%1if &cvstat "=0 %$then %do;
/******‘k******‘k*‘k*****************‘k******
If unable to estimate gamma then force
gamma to be a value of 1.00
****************‘k************************/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (bO+bl*tabs)));
_weight_=1/(mu* (1-mu));

_loss_=-(result*log(mu/(l1-mu))+log(l-mu))/_weight_;

model result = mu;
output out=pred p=predé&n;
ods output ConvergenceStatus=conv2;
run;
data _null_;
set conv?;
call symput ('cvstat2',6 status);
run;
%end;
%else %if &hesstat=1 %then %do;
/****************************************
If Hessian is singular then force

gamma to be a value of 1.00
*****************************************/
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proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (bO+bl*tabs)));
_weight_=1/{(mu* (1-mu));
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=predé&n;
ods output ConvergenceStatus=conv?2;
run;
data _null_;
set conv2;
call symput ('cvstat2',k status);
run;
%end;

data _null_;
call symput ('combo', $eval (&cvstat+&hesstat));

run;
ods listing;

/*************************************************************

Generate the new Target Dose from the parameter estimates
from the NLIN logistic run.

If gamma less than or egual to the threshold then the
new dose is computed as two times previous dose.

If gamma is greater than the threshold then the new dose is
computed for the parameter estimates of the most recent
NLIN run

***************************************************************/

data c;
set beta;
iter=&n;dosecnt=&n+2;knt=&m;
if upcase(_type_ )="FINAL";

%1if &combo=0 %then %do;
if gamma > &thres then do;
tdose=(log(&thres/ (gamma-&thres))-b0) /bl;
TargetDose=round( (round(tdose, 1) /&binsize), 1) *&binsize;
end;
if gamma <= &thres then do;
tdose=(log(&thres/ (1-&thres) )-b0) /bl;
DoseCl=round( (round (tdose, 1) /&binsize), 1) *&binsize;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;
TargetDose=max (of DoseCl,DoseC2);
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if TargetDose=DoseC2 then do;call
symput ('count', $eval (&count+1) ) ;end;
end;
%end;
%else %if &cvstat2=0 %then %do;
tdose=(log(&thres/ (1-&thres))-b0) /bl;
DoseCl=round( (round(tdose, 1) /&binsize), 1) *&binsize;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;
TargetDose=max (of DoseCl,DoseC2);
if TargrtDose=DoseC2 then do;call
symput ('count', $eval (&count+1) ) ;end;
%end;
%1if &combo "=0 %$then %if &cvstat27=0 %then %do;
if &n=1 then do;
TargetDose=2*&fdose;
end;
else do;
TargetDose=2*&dnew;
call symput ('count’, $eval (&count+1)) ;
end;
$end;
if iter > 1 & TargetDose=&dnew then do;
call symput ('dcent', %$eval (&dcnt+1));
end;
else do; call symput('dcnt',1l);end;
run;
data c;
set c;
kount=&count; convs=&cvstat;hessian=&hesstat;tc=0;ci_h=.;eps=1;
call symput('b0',b0);
call symput('bl',bl);
%1if &combo=0 %then %do;
call symput('gl',6 gamma) ;
$end;
%else %do; %$let gl=1;%end;
call symput ('dnew', TargetDose) ;
run;
data _null;
set begin nobs=nobs;
call symput ('DF',nobs-&p);
call symput ('NT',nobs) ;
run;
%1f &combo=0 %then %do;
%if &gl > &thres %then %do;%delta(&n); %end;
$else %do;%deltalp (&n) ; %$end;

%end;
%else %if &cvstat2=0 %$then %do;
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%do; $deltalp (&n) ; 3end;
$end;
data c;
set c;
drop _type_ _status_ _name_ _iter_ _sse_;
if &n > 1 & (&combo=0 | &cvstat2=0) then do;
tc=tinv(0.975, &df) ;
del=&sdevnew;
if gamma > &thres then do;ci_h=tc*del;end;
if ci_h "=. & ci_h <= &binsize/2 & gamma "~=. then do;eps=0;end;
else do; eps=1;end;
call symput('eps',eps);
if ci_h *=. & ci_h <= 1 & gamma "=. then do;eps2=0;end;
else do; eps2=1;end;
call symput('eps2',eps2);
end;
run;
gmend ;
$macro epschk(n);
%$global done;
data _null_;
%$if &n >= 3 %$then %do;
%$if &count >= $then %do;call symput ('done',3);%end;
%2if &eps = 0 %$then %do;call symput('done',1l);%end;
%1if &eps2 = 0 %$then %do;
%1if &dcnt >= 3 %$then %do;call symput ('done',2);%end;
%$end;
%end;
run;
$mend ;
$macro runum;
2do m=&mstrt %to &mruns;
2do j=1 %to &kount;
$let cvstat2=0;
%let sdevnew=0;
$let sdevold=0;
%$let dnew=0;
$let b0=&BO0_TI;
%2let bl=&Bl_TI;
$let gl=1;
$let eps=1;
$let eps2=1;
%$let count=0;
$let dcnt=1;
$sims_init (numi=&numi, seed=86019398+&j+&m) ;
$testum(l) ;
%do k = 2 %$to &eint;
%sims (num=&num, seed=9302468+&m+&Jj *&Kk) ;
$testum(&k) ;
$epschk (&k) ;
%1f &done ~=0 %$then %do;%let done=0;%goto fin;%end;
%end;
%$fin: proc append base=sims data=c force;run;
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proc datasets library=work memtype=data;delete b2; quit;
%end;
%$end;
$mend;
grunum;
proc sort data=sims;by knt;run;
proc print data=sims;run;
proc means data=sims n mean stderr min max clm;
where kount”"=6;
by knt;
var gamma BO Bl TargetDose del dosecnt ci_h;
run;
/*
data ltest.sims5513f3B1L;
set ltest.sims55i3f3B1L sims;
run;
proc print data=ltest.sims55i3f3B1L;run;
*/
proc printto;run;
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Non Linear logistic steep slope model, see Base model for complete
description of code;

%let path = f:\Disertation;

%let path= C:\Documents and Settings\davenpmj.LABS\My
Documents\School\Disertation;

libname ltest "&path";

proc printto log="&path\sim.log" new;run;

goptions reset=all;

goptions device=win rotate=landscape vsize=8 hsize=10.5 ftext=simplex;
options symbolgen macrogen mprint;
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* ok ok ok ok .
’

%let sdose= 1.25, 2.5, 5; *Intial starting dose levels;

%let fdose=5; *High starting dose level;

%$let thres=0.55;

$let mstrt=9; *Start for outer loop counter;

%let mruns=10; *Outer loop counter for se calc;

%let p=3; *Number of parameters to estimate;

%let gl=1; *Intial starting point for gamma;

%let eint=25; *Number of times to run the simulation for each NLIN run
(Inner Loop);

%let kount=100; *Number of iterations of the simulation (Outer Loop);
%let numi=3; *Number of active patients at each initial dose level;
%let numip=1; *Number of placebo patients at each initial dose level;
%let num=3; *Number of patients at each dose level;

%let nump=1; *Number of placebo patients at each dose level;

%let done=0; *Used for stopping rule;

%let binsize=1l; *Smallest dose increase/decrease allowed after inital 3

doses;
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* ok ok ok ok k.
’

proc datasets library=work kill; quit;
gmacro deltal2p(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" then ouput cvb;;
if upcase(_type_)="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl} into covb;
use prms; read all var {b0 bl} into parms;
* Compute values of paritals for b0, and bl for each ED;
d_b0 = -1/parms[2];
d_bl=(log(&thres/ (l-&thres))-parms[1l])*(-1/ (parms([2]#parms[2]));
*Build parameter vector;
beta=j(2,1,0);
betall,l]l=parms[1l];
betal2,1l]l=parms[2];
*Generate variance covariance matrix;
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delta=j(1,2,0);
deltal[l]=d_bo;
deltaf2]=d_bil;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%1if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',6vars);
run;
%end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew’',vars);
run;
%end;
%put sdevnew: &sdevnew;
$put sdevold: &sdevold;
run;
$mend ;
gmacro delta(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" then output cvb;
if upcase(_type_)="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl gamma} into covb;
use prms; read all var {b0 bl gamma} into parms;
* Compute values of paritals for b0, bl and gamma for each ED;
d_b0 = -1/parms([2];
d_bl=(log(&thres/ (parms[3]-&thres))-parms[1l]) * (-
1/ (parms[2]#parms[2]));

d_g=(-1/(parms[3]-&thres))* (1/parms(2]);

*Build parameter vector;

beta=j(3,1,0);

betall,l]l=parmsil];

betal2,1]l=parms(2];

beta[3,1l]=parms[3];

*Generate variance covariance matrix;
delta=j(1,3,0);
deltal[l]=d_bO0;
deltal[2]=d_bl;



deltaf3]=d_g;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%2if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars);
run;
%end;
$else %do;
data _null_;
set devchk;
call symput ('sdevold’, &sdevnew) ;
call symput ('sdevnew',vars);
run;
%end;
gput sdevnew: &sdevnew;
gput sdevold: &sdevold;
run;
gsmend ;

/************************************************

macros for generation of simulations

the variance component (tau) is the variance
observed from the given data using a non-linear
logistic with a quasi-likelihood assumption of
variance showing a bionomial distribution.

tau= 0.0461 gamma=0.6891, BO= -5, Bl = 1.8 are
the estimates modified for steep Bl & smaller BO

resulting supression values can not be less

than zero.
*************************************************/

gmacro sims_init (numi, seed);
%3global sd;
data siminit;
drop i mu d;
do d=&sdose;
mu = 0.6891/(1l+exp(5-1.8*d));
do 1=1 to &numi;
result=mu+sqrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=d;
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output;
end;
mu = 0.6891/ (l+exp(5));
do i=1 to &numip;

result=mu+sgrt(0.0461*mu* (1-mu) ) *rannor (&seed) ;

if result <0 then result=0;
tabs=0;
output;
end;
end;
call symput('sd', &seed);
run;
proc append base=b2 data=siminit force;
$mend ;
gmacro sims (num, seed) ;
%global sd;
data sim;
drop 1 mu;
mu = 0.6891/ (l+exp(5-1.8*&dnew)) ;
do i=1 to &num;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=&dnew;
output;
end;
mu = 0.6891/(1l+exp(5));
do i=1 to &nump;
result=mu+sgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;

tabs=0;
output;
end;
call symput ('sd', &seed);
run;
proc append base=b2 data=sim force;
$mend;

/*************************************

Compute logistic values for input
into reg to calculate starting values

***************************************/
data a;
set ltest.masked;
if result=0 then delete;
if dose <=50;
lres=log(result/ (l-result));
tabs=dose/5;
run;
proc reg data=a outest=initial noprint;
model lres=tabs;
run;
quit;
data _null_;
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set initial;
call symput ('BO_I',Intercept);
call symput('B1_I', tabs);

run;
* ok kkkkkkkkhkkkkhkkhkkkkxk .
7

$macro testum(n) ;
data begin;set b2;run;
ods listing close;
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl gamma=&gl;
mu=gamma/ (1l+exp(-1* (bO0O+bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=predé&n;
ods output ConvergenceStatus=conv;
run;
data _null_;
set conv;
call symput ('cvstat',6 status);
run;
data _null_;
set beta;
hess=0;
if trim(left(_name_)) in ("b0O","bl","gamma") then do;
if b0=. | bl=. | gamma=. then do;hess=1;end;
end;
call symput ('hesstat',6 hess);
run;
%1if &cvstat =0 %then %do;
/****************************************
If unable to estimate gamma then force
gamma to be a value of 1.00
*************************************‘k***/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (bO+bl*tabs)));
_weight_=1/(mu* (1-mu));
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=pred&n;
ods output ConvergenceStatus=conv2;
run;
data _null_;
set conv2;
call symput ('cvstat2', status);
run;
$end;
%else %if &hesstat=1 %then %do;
/*************‘k‘k**********‘k**********‘k***
If Hessian is singular then force
gamma to be a value of 1.00
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*****************************************/

proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (b0+bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=predé&n;
ods output ConvergenceStatus=conv2;
run;
data _null_;
set conv2;
call symput ('cvstat2', status);
run;
%$end;

data _null_;
call symput ('combo', $eval (&cvstat+&hesstat));
run;
ods listing;

/*************************************************************

Generate the new Target Dose from the parameter estimates
from the NLIN logistic run.

If gamma less than or equal to the threshold then the
new dose is computed as two times previous dose.

If gamma is greater than the threshold then the new dose is
computed for the parameter estimates of the most recent
NLIN run

***********‘k******************************‘k*********‘k***‘k******/

data c;
set beta;
iter=&n;dosecnt=&n+2; knt=&m;
if upcase(_type_)="FINAL";

%$if &combo=0 %then %do;
if gamma > &thres then do;
tdose=(log(&thres/ (gamma-&thres))-b0) /bl;
TargetDose=round ( (round(tdose, 1) /&binsize), 1) *&binsize;
end;
if gamma <= &thres then do;
tdose=(log (&thres/ (1-&thres))-b0) /bl;
DoseCl=round( (round(tdose, 1) /&binsize), 1) *&binsize;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;
TargetDose=max (0of DoseCl,DoseC2) ;
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if TargetDose=DoseC2 then do;call
symput ( 'count', %$eval (&count+1)) ;end;
end;
$end;
%else %if &cvstat2=0 %$then %do;
tdose=(log(&thres/ (1l-&thres))-b0) /bl;
DoseCl=round ( (round(tdose, 1) /&binsize), 1) *&binsize;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
Dose(C2=2*&dnew;
end;
TargetDose=max (of DoseCl,DoseC2);
if TargrtDose=DoseC2 then do;call
symput ( 'count ', $eval (&count+1)) ;end;
$end;
%1if &combo =0 %$then %if &cvstat27=0 %$then %do;
if &n=1 then do;
TargetDose=2*&fdose;
end;
else do;
TargetDose=2*&dnew;
call symput('count', $eval (&count+1));
end;
$end;
if iter > 1 & TargetDose=&dnew then do;
call symput ('dcnt', $eval (&dcnt+1)) ;
end;
else do; call symput('dcnt',1l);end;
run;
data c;
set c;
kount=&count;convs=&cvstat;hessian=&hesstat;tc=0;ci_h=.;eps=1;
call symput('b0',b0);
call symput ('bl',bl);
%2if &combo=0 %$then %do;
call symput('gl',6 gamma) ;
$end;
$else %do; %$let gl=1;%end;
call symput ('dnew',6 TargetDose) ;
run;
data null;
set begin nobs=nobs;
call symput('DF',nobs-&p) ;
call symput ('NT', nobs) ;
run;
$if &combo=0 %$then %do;
%2if &gl > &thres %then %do;%delta(&n);%end;
$else %do;%deltalp(&n) ;%end;
%end;
$else %if &cvstat2=0 %$then %do;
%do; %deltalp(&n) ; 3end;
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%end;
data c;
set c¢;
drop _type_ _status_ _name_ _iter__sse_;
if &n > 1 & (&combo=0 | &cvstat2=0) then do;
tc=tinv(0.975, &df) ;
del=&sdevnew;
if gamma > &thres then do;ci_h=tc*del;end;
if ci_h 7=. & ci_h <= &binsize/2 & gamma ~=. then do;eps=0;end;
else do; eps=1;end;
call symput('eps', eps);
if ci_h *=. & ci_h <= 1 & gamma "=. then do;eps2=0;end;
else do; eps2=1;end;
call symput ('eps2',eps2);
end;
run;
$mend;
$macro epschk(n);
%2global done;
data _null_;
%$if &n >= 3 %then %do;
%if &count >= 6 %$then %do;call symput ('done’',3);%end;
%if &eps = 0 %$then %do;call symput ('done',1l);%end;
%if &eps2 = 0 %then %do;
%2if &dcnt >= 3 %then %do;call symput ('done',2);%end;
%$end;
$end;
run;
smend ;
macro runum;
$do m=&mstrt %to &mruns;
%do j=1 %to &kount;
%let cvstat2=0;
%$let sdevnew=0;
%let sdevold=0;
%let dnew=0;
$let b0=&B0_TI;
$let bl=&B1_TI;
$let gl=1;
$let eps=1;
$let eps2=1;
%let count=0;
%$let dcnt=1;
%sims_init (numi=&numi, seed=86019398+&j+&m) ;
gtestum(l) ;
2do k = 2 %to &eint;
%sims (num=&num, seed=9302468+&m+&J *&k) ;
$testum(&k) ;
%epschk (&k) ;
%if &done ~=0 %then %do;%let done=0;%goto fin;%end;
%end;
%$fin: proc append base=sims data=c force;run;
proc datasets library=work memtype=data;delete b2; quit;
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%end;
$end;
$mend;
$runum;
proc sort data=sims;by knt;run;
proc print data=sims;run;
proc means data=sims n mean stderr min max clm;
where kount”"=6;
by knt;
var gamma BO Bl TargetDose del dosecnt ci_h;
run;
/*
data ltest.sims5513f3B1;
set ltest.sims55i13f3Bl1 sims;
run;
proc print data=ltest.sims5513f3B1;run;
*/
proc printto;run;
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Michael-Menten model, see Base non-linear logistic model for complete
description of code;

%let path = f:\Disertation;

%let path= C:\Documents and Settings\davenpmj.LABS\My
Documents\School\Disertation;

libname ltest "&path";

proc printto log="&path\sim.log" new;run;

goptions reset=all;

goptions device=win rotate=landscape vsize=8 hsize=10.5 ftext=simplex;

options symbolgen macrogen mprint;
*********************************************************************2***

* Kk kKK .
’

%let sdose= 1.25, 2.5, 5; *Intial starting dose levels;

%let fdose=5; *High starting dose level;

%let thres=0.55;

%let mstrt=9; *Start for outer loop counter;

$let mruns=10; *Outer loop counter for se calc;

%let p=3; *Number of parameters to estimate;

%let gl=1; *Intial starting point for gamma;

%let eint=25; *Number of times to run the simulation for each NLIN run
(Inner Loop);

%let kount=100; *Number of iterations of the simulation (OQuter Loop);
%let numi=1; *Number of active patients at each initial dose level;
%let numip=1; *Number of placebo patients at each initial dose level;
%let num=3; *Number of patients at each dose level;

%let nump=1; *ONumber of placebo patients at each dose level;

%let done=0; *Used for stopping rule;

%let binsize=1; *Smallest dose increase/decrease allowed after inital 3
doses;
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* ok ok ok k k.
’

proc datasets library=work kill; quit;
$macro deltalp(n);
data cvb prms;
set beta;
if upcase(_type_)="COVB" & upcase(_name_) in ("ALPHA","THETA") then
output cvb;
if upcase(_type_ )="FINAL" then output prms;
run;
proc iml;
use cvb; read all var{alpha theta} into covb;
use prms; read all var {alpha theta} into parms;
* Compute values of paritals for b0, and bl for each ED;
d_al = -(parms(2])/(1 - &thres + parms{1l])**2;
d_tl = (&thres-parms([1l])/(1-&thres + parms[1l]);
*Build parameter vector;
beta=j(2,1,0);
betall,l]l=parms(1];
betal2,1]=parms([2];
*Generate variance covariance matrix;
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delta=3(1,2,0);
deltalll=d_al;
deltal[2]=d_t1;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%$if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars);
run;
%end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',vars);
run;
%end;
$put sdevnew: &sdevnew;
gput sdevold: &sdevold;
run;
$mend ;
smacro delta(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" then output cvb;
if upcase(_type_)="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{alpha theta gamma} into covb;
use prms; read all var {alpha theta gamma)} into parms;
* Compute values of paritals for alpha, theta and gamma for each ED;

d_al = -(parms[2]#parms([3])/ ((parms[3] - &thres + parms[1])**2);
d_tl = (&thres-parms[l])/ (parms[3]-&thres + parms[1]);
d_g = -(parms[2]*(&thres-parms[1l]))/(parms[3] - &thres +

parms[1])**2;;

*Build parameter vector;
beta=j(3,1,0);
betall,l]l=parms[1l];
betal2,1l]=parms[2];
beta[3,1l]=parms[3];
*Generate variance covariance matrix;

delta=j(1,3,0);

deltall]l=d_al;

delta[2]=d_t1;
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deltal[3]=d_g;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars) ;
run;
%end;
%else %do;
data _null_ ;
set devchk;
call symput ('sdevold’, &sdevnew) ;
call symput ('sdevnew',vars);
run;
$end;
gput sdevnew: &sdevnew;
gput sdevold: &sdevold;
run;
$mend ;
/************************************************
macros for generation of simulations
the variance component (tau) is the variance
observed from the given data using a non-linear
logistic with a guasi-likelihood assumption of
variance showing a bionomial distribution.

tau= 0.0358 gamma=0.7752, ALPHA= 0.0592, THETA = 4.4556 are
the estimates from the clinical trail data run

resulting supression values can not be less
than zero.
*************************************************/

gmacro sims_init (numi, seed) ;
$global sd;
data siminit;
drop i mu d;
do d=&sdose;
mu = 0.0592 + (0.7752*d)/(4.4556+d);
do 1=1 to &numi;
result=mu+sgrt (0.0358*mu* (1-mu)) *rannor (&seed) ;
if result <0 then result=0;
tabs=d;
output;



end;

mu =

0.0592;
do i=1 to &numip;

result=mu+sqgrt (0.0358*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;

tabs=0;

output;

end;

end;

call symput ('sd', &seed) ;
run;
proc append base=b2 data=siminit force;run;quit;
smend ;
gmacro sims (num, seed) ;

$global sd;

data sim;

drop 1 mu;

mu =

0.0592 + (0.7752*&dnew) / (4.4556+&dnew) ;
do i=1 to &num;

output;
end;

mu =

result=mu+sgrt (0.0358*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=&dnew;

0.0592;
do 1=1 to &nump;

output;

result=mu+sqgrt (0.0358*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;

tabs=0;

end;

call symput ('sd', &seed);
run;

proc append base=b2 data=sim force;run;quit;
gmend ;

gmacro testum(n);

data begin;set b2;run;
ods listing close;

proc nlin data=begin outest=beta noitprint;
parms alpha=&b0 theta=&bl gamma=&gl;
mu = alpha +
_weight_
_loss_

((gamma*tabs) / (theta + tabs));
= 1/ (mu*(l-mu));
model result

-(result*log(mu/(1-mu))+log(l-mu))/_weight_;
= mu;

ods output ConvergenceStatus=conv;

run;

data _null_;
set conv;
call symput ('cvstat', status);
run;

data _null_;
set beta;

151
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hess=0;
if trim(left(_name_)) in ("aplha", "theta", "gamma") then do;
if alpha=. | theta=. | gamma=. then do;hess=1;end;
end;
call symput ('hesstat',6 hess);
run;

%$if &cvstat ~=0 %then %do;
/****************************************
If unable to estimate gamma then force

gamma to be a value of 1.00
*****************************************/
proc nlin data=begin outest=beta noitprint;

parms alpha=&b0 theta=&bl;
mu = alpha + (tabs/(theta + tabs));
_weight_ =1/ (mu* (1-mu));
_loss_=-{(result*log(mu/(1l-mu))+log(l-mu))/_weight_;
model result = mu;
ods output ConvergenceStatus=conv2l;
run;
data null_;
set conv2;
call symput ('cvstat2',status);
run;
%end;
%else %if &hesstat=1 %$then %do;
/****************************************

If Hessian is singular then force

gamma to be a value of 1.00
*****************************************/
proc nlin data=begin outest=beta noitprint;

parms alpha=&b0 theta=&bl;
mu = alpha + (tabs/(theta + tabs));
_weight_=1/(mu* (1-mu));
_loss_=-(result*log(mu/(1-mu))+log(l-mu))/_weight_;
model result = mu;
ods output ConvergenceStatus=conv2;
run;
data _null_;
set conv2;
call symput ('cvstat2', status);
run;
%end;

data _null_;
call symput ('combo', %eval (&cvstat+&hesstat));
run;
ods listing;

/*************************************************************

Generate the new Target Dose from the parameter estimates
from the NLIN logistic run.

If gamma less than or equal to the threshold then the
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new dose is computed as two times previous dose.

If gamma is greater than the threshold then the new dose is
computed for the parameter estimates of the most recent
NLIN run

***************************************************************/

data c;
set beta;
iter=&n;dosecnt=&n+2;knt=&m;
if upcase(_type_)="FINAL";
%if &combo=0 %then %do;

tdose= theta* (&thres - alpha)/(gamma - &thres + alpha);
if round(tdose,1l) > 0 then do;
TargetDose=round( (round (tdose, 1) /&binsize) , 1) *&binsize;
end;
if round(tdose,l) <= 0 then do;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;
TargetDose=DoseC2;
call symput ('count', %eval (&count+1));
end;
%end;
%else %if &cvstat2=0 %then %do;
tdose=theta* (&thres - alpha)/ (1 - &thres + alpha);
if round(tdose,l) > 0 then do;
DoseCl=round( (round (tdose, 1) /&binsize), 1) *&binsize;
TargetDose=DoseCl;
end;
if round(tdose,l) <= 0 then do;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;
TargetDose=DoseC2;
call symput ('count', %$eval (&count+1));
end;
$end;
%$if &combo ~=0 %then %if &cvstat2”=0 %$then %do;
if &n=1 then do;
TargetDose=2*&fdose;
end;
else do;
TargetDose=2*&dnew;
call symput ('count', %eval (&count+1));
end;
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%end;
if iter > 1 & TargetDose=&dnew then do;
call symput ('dcnt', $eval (&dcnt+1));
end;
else do; call symput('dcnt',1l);end;
run;
data c;
set c;
kount=&count; convs=&cvstat;hessian=&hesstat;tc=0;ci_h=.;eps=1;
call symput ('b0',alpha);
call symput('bl', theta);
%if &combo=0 %then %do;
call symput('gl',6 gamma) ;
%end;
%else %$do; %$let gl=1;%end;
call symput ('dnew', TargetDose) ;
run;
data _null;
set begin nobs=nobs;
call symput ('DF',nobs-&p);
call symput ('NT',nobs);
run;
%2if &combo=0 %$then %do;
%if tdose > 0 %$then %do;%delta(&n);%end;
%else %do;%deltalp (&n) ; %end;
%end;
%else %1if &cvstat2=0 %then %do;
%do; $delta2p (&n) ; $end;
$end;
data c;
set c;
drop _type_ _status_ _name_ _iter_ _sse_;
if &n > 1 & (&combo=0 | &cvstat2=0) then do;
tc=tinv(0.975, &df) ;
del=&sdevnew;
ci_h=tc*del;
if ci_h *=. & ci_h <= &binsize/2 /*& gamma "~=.*/ then
do; eps=0;end;
else do; eps=1;end;
call symput ('eps', eps);
if ci_h 7*=. & ci_h <=1 /*& gamma "=.*/ then do;eps2=0;end;
else do; eps2=1;end;
call symput ('eps2',eps2);
end;
run;
%mend;
gmacro epschk(n);
%global done;
data _null_;
%if &n >= 3 %then %do;
%if &count >= 6 %$then %do;call symput('done',3);%end;
%2if &eps = 0 %$then %do;call symput('done',1l);%end;
%if &eps2 = %$then %do;
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%if &dcnt »>= 3 %then %do;call symput('done’',2);%end;
%end;
$end;
run;
gmend;
$macro runum;
%$do m=&mstrt %$to &mruns;
%do j=1 %to &kount;
$let cvstat2=0;
$let sdevnew=0;
%let sdevold=0;
%let dnew=0;
%let bl=4;
%let b0=.1;
$let gl=1;
$let eps=1;
%let eps2=1;
$let count=0;
%$let dcnt=1;
%sims_init (numi=&numi, seed=8601998+&j+&m) ;
Stestum(l) ;
gdo k = 2 %to &eint;
$sims (num=&num, seed=9302468+&m+&J *&K) ;
$testum(&k) ;
$epschk (&k) ;
%1if &done ~=0 %then %do;%let done=0;%goto fin;%end;
%end;
%fin: proc append base=sims data=c force;run;
proc datasets library=work memtype=data;delete b2; quit;
$end;
$end;
$mend ;
$runum;
proc sort data=sims;by knt;run;
proc print data=sims;run;
prcc means data=sims n mean stderr min max clm;
where kount”"=6;
by knt;
var gamma alpha theta TargetDose del dosecnt ci_h;
run;
/*
data ltest.sims55michmen;
set ltest.sims55michmen sims;
run;
proc print data=ltest.sims55michmen;run;
*/
proc printto;run;
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Gompertz model, see Base non-linear logistic model for complete
description of code;

%let path = f:\Disertation;

%let path= C:\Documents and Settings\davenpmj\My
Documents\School\Disertation;

libname ltest "&path";

proc printto log="&path\sim.log" new;run;

goptions reset=all;

goptions device=win rotate=landscape vsize=8 hsize=10.5 ftext=simplex;
options symbolgen macrogen mprint;
****************‘k****************************************************2***

* Kk k ok k.
’

%let sdose= 1.25, 2.5, 5; *Intial starting dose levels;

%let fdose=5; *High starting dose level;

%$let thres=0.55;

%$let mstrt=9; *Start for outer loop counter;

%$let mruns=10; *Outer loop counter for se calc;

%let p=3; *Number of parameters to estimate;

%let gl=1; *Intial starting point for gamma;

%let eint=25; *Number of times to run the simulation for each NLIN run
(Inner Loop);

%let kount=100; *Number of iterations of the simulation (Outer Loop) ;
%let numi=1; *Number of active patients at each initial dose level;
%let numip=1; *Number of placebo patients at each initial dose level;
%let num=3; *Number of patients at each dose level;

%let nump=1; *Number of placebo patients at each dose level;

%let done=0; *Used for stopping rule;

%let binsize=1l; *Smallest dose increase/decrease allowed after inital 3
doses;

Ak A Ak A A Ak Ak Ak Ak A A Ak Ak kA Ak Ak hkhkhkhAkhAkhkhkhk A hk A hAkhAkhAkhAkhkhkhAkhAhkhAkhdkhkhhkkhkhkhkhkhkdhkhkhkkhhkhkhkhhhhkhkhkhkhkkhkkhkkkkkk

* ok ok ok ok k.
’

proc datasets library=work kill; quit;
$macro deltal2p(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" & upcase(_name_) in ("BO","Bl") then output
cvb;
if upcase(_type_)="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl} into covb;
use prms; read all var {b0 bl} into parms;
* Compute values of paritals for b0, and bl for each ED;
d_b0 = -1/parms[2];
d_bl=(log(-log(&thres))+parms[1])*(1/ (parms[2]#parms[2]));
*Build parameter vector;
beta=j(2,1,0);
betal[l,l]=parms[1l];
betal[2,1]=parms([2];
*Generate variance covariance matrix;
delta=j(1,2,0);
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delta[l]=d_b0;
delta[2]=d_bil;

* Calculate variance of ED target;
var_ed=delta*covb*delta ;

*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',bvars);
run;
%end;

%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew', vars);
run;
$end;
$put sdevnew: &sdevnew;
gput sdevold: &sdevold;
run;
gmend;
$macro delta(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" then output cvb;
if upcase(_type_)="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl gamma} into covb;
use prms; read all var {b0 bl gamma} into parms;
* Compute values of paritals for b0, bl and gamma for each ED;
d_b0 = -1/parms[2];
d_bl=(log(log(parms([3]/&thres))+parms[1l])*(1l/(parms[2]#parms([2]));
d_g=(-1/log(parms[3]/&thres))* (1/(parms[3] *parms[2]));

*Build parameter vector;

beta=j(3,1,0);

betal[l,l]l=parms[1];

betal[2,1]=parms[2];

beta[3,1]=parms[3];

*Generate variance covariance matrix;
delta=3(1,3,0);
delta[l]=d_bo0;
delta[2]=d_bl;
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deltal[3]1=d_g;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars) ;
run;
%end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',6vars) ;
run;
%$end;
$put sdevnew: &sdevnew;
%put sdevold: &sdevold;
run;
gmend ;
/************************************************
macros for generation of simulations
the variance component (tau) is the variance
observed from the given data using a non-linear
logistic with a guasi-likelihood assumption of
variance showing a bionomial distribution.

tau= 0.0461 gamma=0.6366, BO= -0.6804, Bl = 0.3812 are
the estimates from the "TRUTH" from the profile
using dose levels up to 4 Tablets

resulting supression values can not be less
than zero.

*************************************************/

gmacro sims_init (numi, seed);
%global sd;
data siminit;
drop i mu d;
do d=&sdose;
mu = 0.6366* (exp(-exp(0.6804-0.3812*d)));
do i1i=1 to &numi;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=d;



output;
end;
mu = 0.6366* (exp(-exp(0.6804)));
do 1i=1 to &numip;
result=mu+sgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=0;
output;
end;
end;
call symput ('sd’', &seed) ;
run;
proc append base=b2 data=siminit force;
gmend ;
$macro sims (num, seed) ;
$global sd;
data sim;
drop 1 mu;
mu = 0.6366* (exp(-exp(.6804-0.3812*&dnew)));
do i1i=1 to &num;
result=mu+sqgrt{(0.0461*mu* (1-mu) ) *rannor {&seed) ;
if result <0 then result=0;
tabs=&dnew;
output;
end;
mu = 0.6366* (exp(-exp(.6804)));
do i=1 to &nump;
result=mu+sqgrt(0.0461*mu* (1-mu) ) *rannor {(&seed) ;
if result <0 then result=0;

tabs=0;
output;
end;
call symput ('sd', &seed);
run;
proc append base=b2 data=sim force;
$mend ;

/*************************************

Compute logistic values for input
into reg to calculate starting values
***************************************/

data a;
set ltest.masked;
if result=0 then delete;
if dose <=50;
lres=log(result/ (l-result));
tabs=dose/5;
run;
proc reg data=a outest=initial noprint;
model lres=tabs;
run;
quit;
data _null_;
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set initial;
call symput ('BO_I', Intercept);
call symput ('B1_1I', tabs);

run;
*hkhkhkhkhkhkhkkkkhkkhkkkkkkkkx*kx.
1

gmacro testum(n) ;
data begin;set b2;run;
ods listing close;
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl gamma=&gl;
mu = gamma* (exp (-exp (-b0-bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
ods output ConvergenceStatus=conv;
run;
data _null_;
set conv;
call symput ('cvstat',6 status);
run;
data _null_;
set beta;
hess=0;
if trim(left(_name_)) in ("bO","bl","gamma") then do;
if b0=. | bl=. | gamma=. then do;hess=1;end;
end;
call symput ('hesstat', hess);
run;
%if &cvstat ~=0 %$then %do;
/****************************************
If unable to estimate gamma then force
gamma to be a value of 1.00
*****************************************/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;

mu = (exp(-exp(-b0-bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;

model result = mu;
ods output ConvergenceStatus=conv2;
run;
data _null_;
set conv2;
call symput ('cvstat2', status);
run;
%end;
%else %1if &hesstat=1 %then %do;
/****************************************
If Hessian is singular then force
gamma to be a value of 1.00

****'k************************************/

proc nlin data=begin outest=beta noitprint;
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parms b0=&b0 bl=&bl;

mu = (exp(-exp(-b0-bl*tabs)));
_weight_=1/(mu*(1-mu));
_loss_=-(result*log(mu/ (l-mu))+log(l-mu))/_weight_;

model result = mu;
ods output ConvergenceStatus=conv2;

run;
data _null_;

set conv2?;

call symput('cvstat2',k status);

run;

%end;

data _null_;
call symput('combo', $eval (&cvstat+&hesstat));
run;
ods listing;

/*****************************************k***********k*********

Generate the new Target Dose from the parameter estimates
from the NLIN logistic run.

If gamma less than or equal to the threshold then the
new dose is computed as two times previous dose.

If gamma is greater than the threshold then the new dose is
computed for the parameter estimates of the most recent
NLIN run

***************************************************************/

data c;
set beta;
iter=&n;dosecnt=&n+2;knt=&m;
if upcase(_type_ )="FINAL";
%1f &combo=0 %$then %do;
if gamma > &thres then do;
tdose=(-log(log(gamma/&thres))-b0) /bl;
TargetDose=round( (round(tdose, 1) /&binsize),1l) *&binsize;
end;
if gamma <= &thres then do;
if &n=1 then do;
DoseC2=2*&fdose;
end;
else do;
DoseC2=2*&dnew;
end;
TargetDose=DoseC2;
call symput ('count', %$eval (&count+1));
end;
$end;
%$else %1f &cvstat2=0 %$then %do;
tdose=(-log(-log(&thres))-b0)/bl;
DoseCl=round( (round(tdose, 1) /&binsize),1l) *&binsize;
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if &n=1 then do;
DoseC2=2*&fdose;
end;
else doj;
DoseC2=2*&dnew;
end;
TargetDose=max (of DoseCl,DoseC2);
if TargrtDose=DoseC2 then doj;call
symput ('count', %eval (&count+1)) ;end;
%end;
%if &combo ~=0 %then %if &cvstat27=0 %then %do;
if &n=1 then do;
TargetDose=2*&fdose;
end;
else do;
TargetDose=2*&dnew;
call symput ('count', %$eval (&count+1));
end;
$end;
if iter > 1 & TargetDose=&dnew then do;
call symput ('dcnt', $eval (&dcnt+1));
end;
else do; call symput('dcnt',1l);end;
run;
data c;
set c;
kount=&count ; convs=&cvstat;hessian=&hesstat;tc=0;ci_h=
call symput('b0',b0);
call symput('bl’',bl);
%$1if &combo=0 %then %do;
call symput ('gl',gamma);
%$end;
%else %do; %let gl=1;%end;
call symput ('dnew',6 TargetDose) ;
run;

.;eps=1;

data _null;
set begin nobs=nobs;
call symput ('DF',nobs-&p);
call symput ('NT',nobs);
run;
%if &combo=0 %$then %do;
%if &gl > &thres %$then %do;%delta(&n); %$end;
%else %do;%deltalp(&n) ;%end;
$end;
%$else %if &cvstat2=0 %then %do;
%do; $delta2p (&n) ; $end;
%$end;
data c;
set c;

drop _type_ _status_ _name_ _iter_ _sse_;
if &n > 1 & (&combo=0 | &cvstat2=0) then do;

tec=tinv(0.975,&df) ;



del=&sdevnew;
if gamma > &thres then do;ci_h=tc*del;end;
if ci_h "=. & ci_h <= &binsize/2 & gamma "=.
else do; eps=1;end;
call symput('eps', eps);

~

if ci_h *=. & ci_h <= 1 & gamma "=. then do;eps2=0;end;

else do; eps2=1;end;
call symput({'eps2',eps2);
end;
run;
$mend ;
$macro epschk(n);
%$global done;
data _null_;
%$if &n >= 3 %then %do;
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then do;eps=0;end;

%$1if &count >= 6 %then %do;call symput(‘'done’, 3);%end;

%if &eps = 0 %$then %doj;call symput('done’',1l);%end;

%if &eps2 = 0 %then %do;

%if &dcnt >= 3 %then %do;call symput('done’',2);%end;
%end;
send;
run;
smend ;
$macro runum;
$do m=&mstrt %to &mruns;
$do j=1 %to &kount;
$if &m=2 %then %if &3j=22 %$then %$let j=%eval (&j+1);
%1if &m=4 %then %if &3j=20 %then %$let j=%eval (&j+1);
%if &m=6 %then %if &j=18 %then %let j=%eval (&j+1);
%$1if &m=8 %then %if &j=16 %then %let j=%eval (&j+1);
%$if &m=10 %then %if &j=14 %then %let j=%eval (&j+1);

$let cvstat2=0;
%let sdevnew=0;
$let sdevold=0;
$let dnew=0;
%$let b0=&BO_TI;
%$let bl=&Bl1 TI;
$let gl=1;

$let eps=1;

$let eps2=1;
$let count=0;

$let dcnt=1;
$sims_init (numi=&numi, seed=86019398+&j+&m) ;
$testum(l);
%$do k = 2 %to &eint;

%sims (num=&num, seed=9302468+&m+&7 *&K) ;

$testum(&k) ;

$epschk (&k) ;

%21if &done ~=0 %then %do;%let done=0;%goto fin;%end;

%$end;
$fin:proc append base=sims data=c force;run;

proc datasets library=work memtype=data;delete b2;

%end;

quit;
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$end;

smend ;

$runum;
proc sort data=sims;by knt;run;
proc print data=sims;run;
proc means data=sims n mean stderr min max clm;
where kount”=6;

by knt;

var gamma BO Bl TargetDose del dosecnt ci_h;
run;

/*

data ltest.sims55gompertz;

set ltest.sims55gompertz sims;

run;

proc print data=ltest.sims55gompertz;run;

*/
proc printto;run;
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Base Logistic model plus safety addition, see Base non-linear logistic
model for complete description of code;

%let path = f:\Disertation;

%let path= C:\Documents and Settings\davenpmj.LABS\My
Documents\School\Disertation;

libname ltest "&path";

proc printto log="&path\sim.log" new;run;

goptions reset=all;

goptions device=win rotate=landscape vsize=8 hsize=10.5 ftext=simplex;
options symbolgen macrogen mprint;
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%let sdose= 1.25, 2.5, 5; *Intial starting dose levels;

%let fdose=5; *High starting dose level;

%$let thres=0.55;

%let mstrt=1; *Start for outer loop counter;

%let mruns=1; *Outer loop counter for se calc;

%let p=3; *Number of parameters to estimate;

%let gl=1; *Intial starting point for gamma;

%let eint=25; *Number of times to run the simulation for each NLIN run
(Inner Loop) ;

%let kount=25; *Number of iterations of the simulation (Outer Loop);
%let numi=1; *Number of active patients at each initial dose level;
%let numip=1; *Number of placebo patients at each initial dose level;
%let num=3; *Number of patients at each dose level;

%let nump=1; *Number of placebo patients at each dose level;

%let done=0; *Used for stopping rule;

%let binsize=1; *Smallest dose increase/decrease allowed after inital 3

doses;
R I I I I IR I S I IR R R I 2 I I R I I I I I I I I I I O I I I I I I I I I I I I I I I I I I IR I I I I I I b I I I e
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proc datasets library=work kill; quit;
$macro deltalp(n);
data cvb prms;

set beta;

if upcase(_type_)="COVB" & upcase(_name_) "= "GAMMA" then output cvb;
if upcase(_type_)="FINAL" then output prms;
run;

proc iml;
use cvb; read all var{b0 bl} into covb;
use prms; read all var {b0 bl} into parms;
* Compute values of paritals for b0, and bl for each ED;
d_b0 = -1/parms[2];
d_bl=(log(&thres/ (1l-&thres))-parms(1l])* (-1/ (parmg([2]#parms([2]));
*Build parameter vector;
beta=j(2,1,0);
beta[l,1l]=parms([1];
betal2,1l]l=parms[2];
*Generate varilance covariance matrix;
delta=3j(1,2,0);



166

deltal[l]=d_bo0;
deltal[2]=d_bil;

* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
$if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars);
run;
%$end;
%else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',vars);
run;
$end;
$put sdevnew: &sdevnew;
gput sdevold: &sdevold;
run;
$mend ;
$macro delta(n);
data cvb prms;

set beta;
if upcase(_type_)="COVB" then output cvb;
if upcase(_type_ )="FINAL" then output prms;
run;
proc iml;

use cvb; read all var{b0 bl gamma} into covb;
use prms; read all var {b0 bl gamma} into parms;
* Compute values of paritals for b0, bl and gamma for each ED;
d_b0 = -1/parmsi(2];
d_bl=(log(&thres/ (parms[3]-&thres))-parms[1l])* (-
1/ (parms([2]#parms(2]));

d_g=(-1/(parms[3]-&thres))*(1l/parms[2]);

*Build parameter vector;

beta=3(3,1,0);

betall,l]l=parms(l1l];

betal2,1l]=parms(2];

betal3,1]=parms(3];

*Generate variance covariance matrix;
delta=3(1,3,0);
deltall]l=d_bo0;
deltal2]=d_bl;
deltal3]1=d_g;
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* Calculate variance of ED target;
var_ed=delta*covb*delta’;
*print beta;
*print covb;
*print var_ed;
create devchk from var_ed [colname='vars'];
append from var_ed;
quit;
run;
%$if &n=1 %then %do;
data _null_;
set devchk;
call symput ('sdevnew',vars);
run;
$end;
$else %do;
data _null_;
set devchk;
call symput ('sdevold', &sdevnew) ;
call symput ('sdevnew',6vars);
run;
$end;
%put sdevnew: &sdevnew;
$put sdevold: &sdevold;
run;
smend ;
/************************************************
macros for generation of simulations
the variance component (tau) is the variance
observed from the given data using a non-linear
logistic with a quasi-likelihood assumption of
variance showing a bionomial distribution.

tau= 0.0461 gamma=0.6891, BO= -2.296, Bl = 0.5979 are
the estimates from the "TRUTH" from the profile
using dose levels up to 4 Tablets

resulting supression values can not be less

than zero.
*************************************************/

$macro sims_init (numi, seed);
%global sd;
data siminit;
drop i mu d;
do d=&sdose;
mu = 0.6891/ (1l+exp(2.296-0.5979*d) ) ;
do i=1 to &numi;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=d;
output;



end;

mu =

0.6891/(1+exp(2.296));
do i=1 to &numip;

output;
end;

end;
call symput('sd', &seed);
run;

proc append base=b2 data=siminit force;
$mend ;
$macro sims (num, seed) ;
%$global sd;
data sim;
drop i mu;
mu =

0.6891/(1l+exp(2.296-0.5979*&dnew) ) ;
do i=1 to &num;

tabs=&dnew;

output;
end;

result=mu+sgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;

mu =

0.6891/ (1l+exp(2.296));
do i=1 to &nump;

output;
end;

result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;

tabs=0;

call symput('sd', &seed) ;
run;

proc
$mend ;

append base=b2 data=sim force;
$macro

safetychk (n, num, seed, dse) ;
data aechk;

retain aeY 0;

if &n=2 then do d=&sdose;
do i =1 to &numi;
mu =

1/ (l+exp(-(d-12.5)/2.547));
ae=ranuni (&seed) ;

if ae <= mu then aeY+1;
output;

end;

if aeY > 0 then call symput ('aestop',1);
end;
else do;
mu =

= 1/(l+exp(-(&dse-12.5)/2.547));
do i1i=1 to &num;
ae=ranuni (&seed) ;

if ae <= mu then aevY+1l;

result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=0;
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output;
end;
aepct=(&&AE&dse+aeY) / (&&BIN&dse+&num) ;
call symput ("aePCT",aepct);
call symput ("BIN&dse", $eval (&&BIN&dse+&num) ) ;
call symput ("AE&dse", &&AE&dse+aeY) ;
end;
if aeY > 0 then call symput ('AEX',aeY);
else call symput ('AEX',0);
run;
smend ;

data _null_;

put "&AEPCT";

run;
/*************************************
Compute logistic values for input
into reg to calculate starting values
***************************************/
data a;

set ltest.masked;

if result=0 then delete;

1f dose <=50;
lres=log(result/(l-result));
tabs=dose/5;
run;
proc reg data=a outest=initial noprint;
model lres=tabs;

run;

quit;
data _null_;

set initial;

call symput ('BO_I',Intercept);

call symput('B1_TI', tabs);

run;
hok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kokokok .
I

gmacro testum(n) ;
data begin;set b2;run;
ods listing close;
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl gamma=&gl;
mu=gamma/ (l+exp(-1* (b0+bl*tabs)));
_weight_=1/(mu* (l-mu));
_loss_=-(result*log(mu/ (1l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=pred&n;
ods output ConvergenceStatus=conv;

run;
data _null_ ;
set conv;

call symput ('cvstat', status);



run;
data _null_;
set beta;
hess=0;
if trim(left(_name_)) in ("bO","bl","gamma") then do;
if bo=. | bl=. | gamma=. then do;hess=1;end;
end;
call symput ('hesstat',6 hess);
run;
%$if &cvstat =0 %then %do;
/****************************************
If unable to estimate gamma then force
gamma to be a value of 1.00
*****************************************/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (bO+bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
output out=pred p=pred&n;
ods output ConvergenceStatus=conv?2;
run;
data _null_;
set conv?;
call symput ('cvstat2', status);
run;
%$end;
%else %if &hesstat=1 %then %do;
/****************************************
If Hessian is singular then force
gamma to be a value of 1.00
*****************************************/
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl;
mu=1/(l+exp(-1* (bO0+bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(1l-mu))+log(l-mu))/_weight_;

model result = mu;
output out=pred p=predé&n;
ods output ConvergenceStatus=conv2;
run;
data _null_ ;
set conv2;
call symput('cvstat2',6 status);
run;
$end;

data _null ;
call symput ('combo’, %$eval (&cvstat+&hesstat));
run;
ods listing;
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/************************************-k***‘k‘k‘k***********‘k‘k‘k‘k‘k**

Generate the new Target Dose from the parameter estimates
from the NLIN logistic run.

If gamma less than or equal to the threshold then the
new dose is computed as two times previous dose.

If gamma is greater than the threshold then the new dose is
computed for the parameter estimates of the most recent
NLIN run

***********‘k****‘k**************‘k********‘k‘k‘k********************/

data c;
set beta;
lter=&n;dosecnt=&n+2;knt=&m;
if upcase(_type_ )="FINAL";

%$if &combo=0 %then %do;
if gamma > &thres then do;
tdose=(log(&thres/ (gamma-&thres))-b0) /bl;
TargetDose=round ( (round (tdose, 1) /&binsize),1l) *&binsize;
end; .
if gamma <= &thres then do;
tdose=(log(&thres/ (l-&thres))-b0) /bl;
DoseCl=round ( (round (tdose, 1) /&binsize), 1) *&binsize;
if &n=1 then do;
DoseC2=&dmult*&fdose;
end;
else do;
DoseC2=&dmult*&dnew;
end;
TargetDose=max (of DoseCl,DoseC2);
if TargetDose=DoseC2 then do;
call symput ('count', %eval (&count+1l)) ;end;
end;
%end;
%else %if &cvstat2=0 %then %do;
tdose=(log (&thres/ (1-&thres))-b0) /bl;
DoseCl=round( (round (tdose, 1) /&binsize),1l) *&binsize;
if &n=1 then do;
DoseC2=&dmult*&fdose;
end;
else do;
DoseC2=&dmult*&dnew;
end;
TargetDose=max (of DoseCl,DoseC2);
if TargrtDose=DoseC2 then do;
call symput ('count', %eval (&count+1)) ;end;
%end;
%1if &combo *=0 %then %if &cvstat27=0 %then %do;
if &n=1 then do;
TargetDose=&dmult*&fdose;
end;
else do;
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TargetDose=&dmul t *&dnew;
call symput ('count', $eval (&count+1));
end;
%end;
if iter > 1 & TargetDose=&dnew then do;
call symput ('dcnt', %$eval (&dcnt+1));
end;
else do; call symput('dcnt',1l);end;
run;
data c;
set c;
kount=&count;convs=&cvstat;hessian=&hesstat;tc=0;ci_h=.;eps=1;
call symput ('b0',b0);
call symput('bl’',bl);
%$1if &combo=0 %then %do;
call symput('gl',gamma) ;
%end;
%else %do; %let gl=1;%end;
%if &wallchk=1 %then %do;
if TargetDose >= &wall then do;
call symput('wallchk',0);
call symput ('dnew', &wall) ;
call symput('wall',9999);
end;
else do;call symput ('dnew', TargetDose) ;end;
%end;
%21f &wallchk=0 %then %do;call symput ('dnew', TargetDose) ; %$end;
run;
data _null;
set begin nobs=nobs;
call symput ('DF',nobs-&p);
call symput ('NT',nobs);
run;
%$if &combo=0 %then %do;
%if &gl > &thres %$then %do; %delta (&n); $end;
$else %do;%deltalp(&n) ; %end;
$end;
%else %if &cvstat2=0 %then %do;
%do; $delta2p (&n) ; 3end;
%end;
data c;
set c;
drop _type_ _status_ _name_ _iter_ _sse_;
if &n > 1 & (&combo=0 | &cvstat2=0) then do;
tc=tinv(0.975, &df) ;
del=&sdevnew;
if gamma > &thres then do;ci_h=tc*del;end;
if ci_h *=. & ci_h <= &binsize/2 & gamma "=. then do;eps=0;end;
else do; eps=1;end;
call symput ('eps', eps);
if ci_h "=. & ci_h <=1 & gamma ~=. then do;eps2=0;end;
else do; eps2=1;end;
call symput('eps2',eps2);
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end;
run;
$mend ;
$macro epschk(n);
%$global done;
data _null_;
%2if &n >= 3 %then %do;
%1f &count >= 6 %then %do;call symput('done',3);%end;
%if &eps = 0 %then %do;call symput ('done',1l);%end;
%1f &eps2 = 0 %$then %do;
%1if &dcnt >= 3 %then %do;call symput ('done',2);%end;
%end;
$end;
%2if &aestop =1 %then %do;call symput('done',4);%end;
run;
data c; set c¢; done=&done;run;
$mend ;
gmacro doseadj (n) ;
%$1if &AEX >=1 %then %do;
data _null_;
call symput('wall', &dnew) ;
call symput ('aecnt', $eval (&aecnt+&AEX) ) ;
call symput ('wallchk',1);
run;
data c;
set c;
if &n=2 then do;n=2+(&k-1);end;
else do;n=(&k-1)*3;end;
ae_p=&aecnt/n;
ndmult=&dmult*.5;
newdose=min (TargetDose, &wall, &dnew) ;
call symput ('dnew', newdose) ;
call symput ('dmult',ndmult);
if &aePCT >=1/3 then call symput('aestop',1);
if ae_p >= 1/3 then call symput('aestop',1);
run;
%$end;
$mend ;
$macro runum;
$do m=&mstrt %$to &mruns;
2do j=1 %$to &kount;
%let cvstat2=0;
%$let sdevnew=0;
$let sdevold=0;
$let dnew=0;
%$let b0=&B0_TI;

%$let bl=&Bl_TI;

$let gl=1;
$let eps=1;
$let eps2=1;

$let count=0;
$let dcnt=1;
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%$let AEX=0;
%let aePCT=0;
$let aecnt=0;
$let aestop=0;

%let dmult=2; * Dose Multiplier;

%$let wall=9999;
%let wallchk=0;
data _null_;
gdo g=1 %$to 50;
call symput ("BIN&g",0);
call symput ("AE&g",0);
%$end;
run;

%sims_init (numi=&numi, seed=86019398+&j+&m) ;
$testum(l) ;
%$do k = 2 %to &eint;

%sims (num=&num, seed=9302468+&m+&7] *&Kk) ;

$safetychk (n=&k, num=&num, seed=9302468+&m+&J *&k, dse=&dnew) ;
$testum(&k) ;

$doseadj (&k) ;

%epschk (&k) ;proc append base=sims data=c force;run;

%if &done ~=0 %$then %do;%let done=0;%goto fin;%end;

%end;
%$fin: proc append base=sims data=c force;run;

proc datasets library=work memtype=data;delete b2; quit;
$end;

%end;
gmend ;

$runum;
proc sort data=sims; by knt;run;

proc print data=sims;run;
proc means data=sims n mean stderr min max clm;
where kount”=6;

by knt;

var gamma B0 Bl TargetDose del dosecnt ci_h;

run;
/*
data
set
run;
proc
*/

ltest.sims5513f1AE;
ltest.sims5513f1AE sims;

print data=ltest.sims55i13f1AE;run;

proc printto;run;
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Fixed Dose model, see Base non-linear logistic model for complete
description of code;

*3let path = f:\Disertation;

%let path= C:\Documents and Settings\davenpmj.LABS\My
Documents\School\Disertation;

libname ltest "&path";

proc printto log="&path\sim.log" new;run;

goptions reset=all;

goptions device=win rotate=landscape vsize=8 hsize=10.5 ftext=simplex;
options symbolgen macrogen mprint;

dAhkkhkhkkhkhkkhkhAkhkhkhkhkhkkhkhAkkhkhkhkhkhkdhkhkdhkhAkhkhdkhkhkhkhkhkhkhkhhkhbhkhdhkdhkhhkhkhkhkhbhkhkhhkhbhkdhbhhhkhhkhkhkhhkhhkhhhhkhkihxk

* ok ok ok ok .
12

%let sdose= 0.5, 1, 2, 4, 8, 16; * dose levels;

*%let sdose= 1.25, 2.5, 5, 7, 6, 6, 5, 5, 5, 10; * dose levels;

%let fdose=5; *High starting dose level;

%$let thres=0.55;

%let mstrt=1; *Start for outer loop counter;

%let mruns=10; *Outer loop counter for se calc;

%let p=3; *Number of parameters estimated;

%let kount=100; *Number of iterations of the simulation (Outer Loop) ;
%$let numi=5; *Number of active patients at each dose level;

%let numip=1; *Number of placebo patients at each dose level;

%let binsize=1;

Ak hkhkkhkhkhkhkkhkkhkhkdhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkdhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkxk

* k ok k ok k.
’

proc datasets library=work kill; quit;

$macro delta;
data cvb;
set beta;
if upcase(_type_)="COVB";
run;
proc iml;
use cvb; read all var{b0 bl gamma} into covb;
use c¢; read point 1 var {b0 bl gamma} into parms;
* Compute values of paritals for b0, bl and gamma for each ED;
d_b0 = -1/parms[2];
d_bl=(log(&thres/ (parms[3]-&thres))-parms[1l]) * (-
1/ (parms[2]#parms([2]));
d_g=(-1/(parms[3]-&thres))* (1/parms[2]);
*Build parameter vector;
beta=j(3,1,0);
betall,l]l=parms[1l];
betal2,1l]=parms[2];
betal[3,1]=parms([3];
*Generate variance covariance matrix;
delta=3j(1,3,0);
deltal[l]=d_bo0;
delta(2]=d_bil;
delta([3]1=d_g;
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* Calculate variance of ED target;
var_ed=delta*covb*delta’;
sdev=sqrt (var_ed) ;
*print beta;
*print covb;
*print var_ed sdev;
create devchk from var_ed [colname='vars'];
append from sdev;
quit;
run;
data _null_;
set devchk;
call symput ('sdevs',6 vars);
run;
$mend ;
/************************************************
macros for generation of simulations
the variance component (tau) is the variance
observed from the given data using a non-linear
logistic with a quasi-likelihood assumption of
variance showing a bionomial distribution.

tau= 0.0461 gamma=0.6891, BO= -2.296, Bl = 0.5979 are
the estimates from the "TRUTH" from the profile
using dose levels up 100 mg

run with steep slope B1=1.8 and long shelp B0=-5

resulting supression values can not be less

than zero.
*********‘k***************************************/

gmacro sims_init (numi, seed);
%global sd;
data siminit;
drop 1 mu d;
do d=&sdose;
mu = 0.6891/(l+exp(5-1.8*d));
do i=1 to &numi;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=d;
output;
end;
mu = 0.6891/(1l+exp(5));
do i=1 to &numip;
result=mu+sqgrt (0.0461*mu* (1-mu) ) *rannor (&seed) ;
if result <0 then result=0;
tabs=0;
output;
end;
end;
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call symput('sd', &seed);
run;
proc append base=b2 data=siminit force;
gmend ;

/*************************************

Compute logistic values for input
into reg to calculate starting values
***************************************/

data a;
set ltest.masked;
if result=0 then delete;
if dose <=50;
lres=log(result/ (l-result));
tabs=dose/5;
run;
proc reg data=a outest=initial noprint;
model lres=tabs;
run;
quit;
data _null_;
set initial;
call symput ('BO_I',Intercept);
call symput ('B1_I', tabs);

run;
k ok Kk k Kk Kk ok kK ok ok ok ok ok ok ok ok k.
’

$macro testum;
data begin;set b2;run;
ods listing close;
proc nlin data=begin outest=beta noitprint;
parms b0=&b0 bl=&bl gamma=&gl;
mu=gamma/ (1l+exp (-1* (b0+bl*tabs)));
_weight_=1/(mu* (1-mu)) ;
_loss_=-(result*log(mu/(l-mu))+log(l-mu))/_weight_;
model result = mu;
ods output ConvergenceStatus=conv;
run;quit;
ods listing;

data c;
set beta;
if upcase(_type_)="FINAL";tc=.;del=.;ci_h=.;knt=&m;
if gamma > &thres then do;
tdose=(log(&thres/ (gamma-&thres))-b0) /bl;
TargetDose=round( (round (tdose, 1) /&binsize), 1) *&binsize;
end;
run;
data _null;
set begin nobs=nobs;
call symput ('DF',nobs-&p);
call symput ('NT',nobs);
run;



data _null_;
set beta;
if gamma <= &thres then do;%let g0=1;end;
else doj;call symput('g0',0);end;
run;

%1if &g0=0 %then %do;
$delta;
data c;
set c;
tc=tinv (0.975, &df) ;
del=&sdevs;
cl_h=tc*del;
run;
%end;
$mend ;

$macro runum;
%do m=&mstrt %to &mruns;
%do k=1 %to &kount;
%let sdevnew=0;
%$let sdevold=0;
$let dnew=0;
%$let b0=&B0_TI;
$let bl=&B1_TI;
$let gl=1;
%$sims_init (numi=&numi, seed=81193098+&k+10*&m) ;
$testum;
proc append base=sims data=c force;run;
proc datasets library=work memtype=data;delete b2;
$end;
$end;
$mend;
$runum;

data ltest.sim21fdtb5plv3;
set sims;
run;
proc print data=ltest.sim21fdt5plv3;run;
proc printto;run;

*proc print data=sims;run;

quit;
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